mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Finish the PolyType_0 lemma!
This commit is contained in:
parent
007e8cf795
commit
300007621a
1 changed files with 7 additions and 37 deletions
|
@ -198,6 +198,8 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
have H22 := λ n=> (hh n).right
|
have H22 := λ n=> (hh n).right
|
||||||
have H2 : c ≠ 0 := by
|
have H2 : c ≠ 0 := by
|
||||||
exact H22 0
|
exact H22 0
|
||||||
|
have H2 : (c : ℚ) ≠ 0 := by
|
||||||
|
simp; tauto
|
||||||
clear H22
|
clear H22
|
||||||
constructor
|
constructor
|
||||||
· intro n Nn
|
· intro n Nn
|
||||||
|
@ -211,42 +213,10 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
exact this2.symm
|
exact this2.symm
|
||||||
|
|
||||||
|
|
||||||
· sorry
|
· have this : Polynomial.degree Poly = 0 := by
|
||||||
-- intro n
|
simp only [map_intCast]
|
||||||
-- specialize aaa n
|
exact Polynomial.degree_C H2
|
||||||
-- have this1 : c ≠ 0 → f n = c := by
|
tauto
|
||||||
-- sorry
|
|
||||||
-- rcases aaa with ⟨A, B⟩
|
|
||||||
-- have this1 : f n = c := by
|
|
||||||
-- tauto
|
|
||||||
-- constructor
|
|
||||||
-- clear A
|
|
||||||
-- · have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
|
||||||
-- rw [← Poly_constant Poly (c : ℚ)]
|
|
||||||
-- sorry
|
|
||||||
-- specialize this2 n
|
|
||||||
-- rw [this2]
|
|
||||||
-- tauto
|
|
||||||
-- · sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- constructor
|
|
||||||
-- · intro n Nn
|
|
||||||
-- specialize aaa n
|
|
||||||
-- have this1 : c ≠ 0 → f n = c := by
|
|
||||||
-- tauto
|
|
||||||
-- rcases aaa with ⟨A, B⟩
|
|
||||||
-- have this1 : f n = c := by
|
|
||||||
-- tauto
|
|
||||||
-- clear A
|
|
||||||
-- have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
|
||||||
-- rw [← Poly_constant Poly (c : ℚ)]
|
|
||||||
-- sorry
|
|
||||||
-- specialize this2 n
|
|
||||||
-- rw [this2]
|
|
||||||
-- tauto
|
|
||||||
-- · sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue