mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-02-05 21:32:32 -06:00
commit
2f126ef800
2 changed files with 25 additions and 10 deletions
|
@ -4,6 +4,7 @@ import Mathlib.RingTheory.PrincipalIdealDomain
|
|||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
/- This file contains the definitions of height of an ideal, and the krull
|
||||
dimension of a commutative ring.
|
||||
|
@ -15,22 +16,24 @@ import Mathlib.RingTheory.Localization.AtPrime
|
|||
developed.
|
||||
-/
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : Ideal R)
|
||||
namespace Ideal
|
||||
|
||||
namespace ideal
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J | J ≤ I ∧ J.IsPrime}
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J ≤ I} - 1
|
||||
|
||||
noncomputable def krull_dim (R : Type _) [CommRing R] := height (⊤ : Ideal R)
|
||||
noncomputable def krull_dim (R : Type) [CommRing R]: WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := sorry
|
||||
lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := by sorry
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
lemma dim_le_one_iff : krull_dim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := sorry
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krull_dim R ≤ krull_dim (Polynomial R) + 1 := sorry
|
||||
|
@ -38,7 +41,7 @@ lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
|||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krull_dim R = krull_dim (Polynomial R) + 1 := sorry
|
||||
|
||||
lemma height_eq_dim_localization [Ideal.IsPrime I] :
|
||||
height I = krull_dim (Localization.AtPrime I) := sorry
|
||||
lemma height_eq_dim_localization :
|
||||
height I = krull_dim (Localization.AtPrime I.asIdeal) := sorry
|
||||
|
||||
lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I) ≤ krull_dim R := sorry
|
||||
lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I.asIdeal) ≤ krull_dim R := sorry
|
|
@ -9,6 +9,8 @@ import Mathlib.RingTheory.Noetherian
|
|||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.MvPolynomial.Basic
|
||||
import Mathlib.RingTheory.Ideal.Over
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
|
||||
|
||||
|
@ -44,4 +46,14 @@ variable (I : Ideal R)
|
|||
#check Polynomial R
|
||||
--this is the polynomial ring with variables indexed by ℕ
|
||||
#check MvPolynomial ℕ R
|
||||
--hopefully there's good communication between them
|
||||
--hopefully there's good communication between them
|
||||
|
||||
|
||||
--There's a preliminary version of the going up theorem
|
||||
#check Ideal.exists_ideal_over_prime_of_isIntegral
|
||||
|
||||
--Theorems relating primes of a ring to primes of its localization
|
||||
#check PrimeSpectrum.localization_comap_injective
|
||||
#check PrimeSpectrum.localization_comap_range
|
||||
--Theorems relating primes of a ring to primes of a quotient
|
||||
#check PrimeSpectrum.range_comap_of_surjective
|
Loading…
Reference in a new issue