diff --git a/.docker/test.lean b/.docker/test.lean new file mode 100644 index 0000000..a851192 --- /dev/null +++ b/.docker/test.lean @@ -0,0 +1,133 @@ +import Mathlib.Order.KrullDimension +import Mathlib.Order.JordanHolder +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.Height +import Mathlib.RingTheory.Ideal.Basic +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.LinearAlgebra.Finsupp +import Mathlib.RingTheory.GradedAlgebra.Basic +import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Ideal.AssociatedPrime +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Artinian +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Finiteness +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.RingTheory.FiniteType +import Mathlib.Order.Height +import Mathlib.RingTheory.PrincipalIdealDomain +import Mathlib.RingTheory.DedekindDomain.Basic +import Mathlib.RingTheory.Ideal.Quotient +import Mathlib.RingTheory.Localization.AtPrime +import Mathlib.Order.ConditionallyCompleteLattice.Basic +import Mathlib.Algebra.DirectSum.Ring +import Mathlib.RingTheory.Ideal.LocalRing +import Mathlib +import Mathlib.Algebra.MonoidAlgebra.Basic +import Mathlib.Data.Finset.Sort +import Mathlib.Order.Height +import Mathlib.Order.KrullDimension +import Mathlib.Order.JordanHolder +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.Height +import Mathlib.RingTheory.Ideal.Basic +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.LinearAlgebra.Finsupp +import Mathlib.RingTheory.GradedAlgebra.Basic +import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Ideal.AssociatedPrime +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Artinian +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Finiteness +import Mathlib.RingTheory.Ideal.Operations + + + + +noncomputable def length ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} + + +def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I) + + +def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I) + +--theorem monotone_stabilizes_iff_noetherian : +-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by +-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] + +open GradedMonoid.GSmul + +open DirectSum + +instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i) + where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) + +lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) : + of _ _ (a • m) = of _ _ a • of _ _ m := by + refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm + refine' of_eq_of_gradedMonoid_eq _ + exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _ + +instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by + letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom + exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i) + +instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by + letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) + exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) + +noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) + : ℤ → ℕ∞ := fun i => (length (𝒜 0) (𝓜 i)) + +lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] + (finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by + intro i + let h := hilbert_function 𝒜 𝓜 + simp at h + let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne + have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _ + have' := hn i + exact ((n i) : ℤ ) + + + +noncomputable def dimensionring { A: Type _} + [CommRing A] := krullDim (PrimeSpectrum A) + + +noncomputable def dimensionmodule ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) ) + +-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +-- [DirectSum.GCommRing 𝒜] +-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry + + +def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly + + + +theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry + +-- Semiring A] + +-- variable [SetLike σ A] \ No newline at end of file diff --git a/comm_alg/Defhil.lean b/comm_alg/Defhil.lean deleted file mode 100644 index 65da0c6..0000000 --- a/comm_alg/Defhil.lean +++ /dev/null @@ -1,29 +0,0 @@ -import Mathlib -import Mathlib.RingTheory.Ideal.Basic -import Mathlib.RingTheory.Ideal.Operations -import Mathlib.LinearAlgebra.Finsupp -import Mathlib.RingTheory.GradedAlgebra.Basic -import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal - - - - -variable {R : Type _} (M A B C : Type _) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup A] [Module R A] [AddCommGroup B] [Module R B] [AddCommGroup C] [Module R C] - - -#check (A B : Submodule _ _) → (A ≤ B) - -#check Preorder (Submodule _ _) - -#check krullDim (Submodule _ _) - -noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤} - -open LinearMap - -#check length M - - - ---lemma length_additive_shortexact {f : A ⟶ B} {g : B ⟶ C} (h : ShortExact f g) : length B = length A + length C := sorry - diff --git a/comm_alg/hilpol.lean b/comm_alg/hilpol.lean deleted file mode 100644 index 0aab559..0000000 --- a/comm_alg/hilpol.lean +++ /dev/null @@ -1,41 +0,0 @@ -import Mathlib.Order.KrullDimension -import Mathlib.Order.JordanHolder -import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -import Mathlib.Order.Height -import Mathlib.RingTheory.Ideal.Basic -import Mathlib.RingTheory.Ideal.Operations -import Mathlib.LinearAlgebra.Finsupp -import Mathlib.RingTheory.GradedAlgebra.Basic -import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal -import Mathlib.Algebra.Module.GradedModule -import Mathlib.RingTheory.Ideal.AssociatedPrime -import Mathlib.RingTheory.Noetherian - -variable {ι σ R A : Type _} - -section HomogeneousDef - -variable [Semiring A] - -variable [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) - -variable [GradedRing 𝒜] - -variable (I : HomogeneousIdeal 𝒜) - --- def Ideal.IsHomogeneous : Prop := --- ∀ (i : ι) ⦃r : A⦄, r ∈ I → (DirectSum.decompose 𝒜 r i : A) ∈ I --- #align ideal.is_homogeneous Ideal.IsHomogeneous - --- structure HomogeneousIdeal extends Submodule A A where --- is_homogeneous' : Ideal.IsHomogeneous 𝒜 toSubmodule - ---#check Ideal.IsPrime hI - -def HomogeneousPrime (I : Ideal A):= Ideal.IsPrime I - -def HomogeneousMax (I : Ideal A):= Ideal.IsMaximal I - ---theorem monotone_stabilizes_iff_noetherian : --- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by --- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] \ No newline at end of file