mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
commit
284f0e60d1
1 changed files with 27 additions and 3 deletions
|
@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
-/
|
-/
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
open LocalRing
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
|
@ -32,10 +33,33 @@ lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpe
|
||||||
|
|
||||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||||
iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔
|
apply Set.chainHeight_mono
|
||||||
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
intro J' hJ'
|
||||||
|
show J' < J
|
||||||
|
exact lt_of_lt_of_le hJ' I_le_J
|
||||||
|
|
||||||
|
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||||
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
|
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
||||||
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||||
|
|
||||||
|
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||||
|
apply le_antisymm
|
||||||
|
. rw [krullDim_le_iff']
|
||||||
|
intro I
|
||||||
|
apply WithBot.coe_mono
|
||||||
|
apply height_le_of_le
|
||||||
|
apply le_maximalIdeal
|
||||||
|
exact I.2.1
|
||||||
|
. simp
|
||||||
|
|
||||||
|
#check height_le_krullDim
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
|
||||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
||||||
|
|
Loading…
Reference in a new issue