Merge pull request #54 from ssavkar1/main

wrote proofs of two lemmas
This commit is contained in:
ssavkar1 2023-06-14 11:56:00 -07:00 committed by GitHub
commit 27f3854281
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
IsArtinianRing R := by sorry
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
by
-- if R is Artinian and P is prime then R/P is Integral Domain
-- which is Artinian Domain
-- if R is Artinian and P is prime then R/P is Artinian Domain
-- RP is a field by the above lemma
-- P is maximal
@ -56,13 +57,13 @@ by
have artRP : IsArtinianRing (RP) := by
exact isArtinianRing_of_quotient_of_artinian R P IsArt
have artRPField : IsField (RP) := by
exact ArtinianDomainIsField (RP) artRP
have h := Ideal.Quotient.maximal_of_isField P artRPField
exact h
-- Then R/I is Artinian
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (RI) := by
-- RI.IsArtinian → monotone_stabilizes_iff_artinian.RI
-- Use Stacks project proof since it's broken into lemmas