mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge pull request #49 from GTBarkley/sayantan
Made some progress on dim_eq_dim_polynomial_add_one
This commit is contained in:
commit
2737f8bba6
2 changed files with 46 additions and 82 deletions
46
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
46
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
|
@ -0,0 +1,46 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
|
||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||||
-- simp
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||
rw [le_antisymm_iff]
|
||||
constructor
|
||||
· exact dim_le_dim_polynomial_add_one
|
||||
· unfold krullDim
|
||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
intro P
|
||||
unfold height
|
||||
sorry
|
||||
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||
fun _ ↦ add_le_add_right (le_iSup height _) 1
|
||||
apply iSup_le
|
||||
exact this
|
||||
sorry
|
|
@ -1,82 +0,0 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro primeP
|
||||
obtain T := eq_bot_or_top P
|
||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||
tauto
|
||||
· intro botP
|
||||
rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
unfold height
|
||||
simp
|
||||
by_contra spec
|
||||
change _ ≠ _ at spec
|
||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||
obtain ⟨J, JlP : J < P⟩ := spec
|
||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||
rw [field_prime_bot] at P0 J0
|
||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||
have : J = P := PrimeSpectrum.ext J P this
|
||||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
noncomputable
|
||||
instance : CompleteLattice (WithBot ℕ∞) :=
|
||||
inferInstanceAs <| CompleteLattice (WithBot (WithTop ℕ))
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
unfold krullDim at h
|
||||
simp [height] at h
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||
have h2 : P' ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||
contradiction
|
||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||
rw [iSup_le_iff] at this
|
||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
Loading…
Reference in a new issue