diff --git a/FinalPolyType.lean b/FinalPolyType.lean new file mode 100644 index 0000000..b259097 --- /dev/null +++ b/FinalPolyType.lean @@ -0,0 +1,279 @@ +import Mathlib.Order.Height +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic + +-- Setting for "library_search" +set_option maxHeartbeats 0 +macro "ls" : tactic => `(tactic|library_search) + +-- New tactic "obviously" +macro "obviously" : tactic => + `(tactic| ( + first + | dsimp; simp; done; dbg_trace "it was dsimp simp" + | simp; done; dbg_trace "it was simp" + | tauto; done; dbg_trace "it was tauto" + | simp; tauto; done; dbg_trace "it was simp tauto" + | rfl; done; dbg_trace "it was rfl" + | norm_num; done; dbg_trace "it was norm_num" + | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" + -- | gcongr; done + | ring; done; dbg_trace "it was ring" + | trivial; done; dbg_trace "it was trivial" + | aesop; done; dbg_trace "it was aesop" + -- | nlinarith; done + | fail "No, this is not obvious.")) + + +-- Testing of Polynomial +section Polynomial +noncomputable section +#check Polynomial +#check Polynomial (ℚ) +#check Polynomial.eval + + +example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by + have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by + sorry + obviously + +-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by +-- sorry + +-- degree of a constant function is ⊥ (is this same as -1 ???) +#print Polynomial.degree_zero + +def F : Polynomial ℚ := Polynomial.C (2 : ℚ) +#print F +#check F +#check Polynomial.degree F +#check Polynomial.degree 0 +#check WithBot ℕ +-- #eval Polynomial.degree F +#check Polynomial.eval 1 F +example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by + refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ + simp only [Rat.ofNat_num, Rat.ofNat_den] + rw [F] + simp + +-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ +#check CoeFun + + + + +end section + + + + +-- @[BH, 4.1.2] + +-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ +noncomputable section +-- Polynomial type of degree d +@[simp] +def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly +section +-- structure PolyType (f : ℤ → ℤ) where +-- Poly : Polynomial ℤ +-- d : +-- N : ℤ +-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly + +#check PolyType + +example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by + unfold PolyType + sorry + -- use Polynomial.monomial (2 : ℤ) (1 : ℤ) + -- have' := hf 0; ring_nf at this + -- exact this + +end section + +-- Δ operator (of d times) +@[simp] +def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) + | f, 0 => f + | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) +section +-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n +-- def add' : ℕ → ℕ → ℕ +-- | 0, m => m +-- | n+1, m => (add' n m) + 1 +-- #eval add' 5 10 +#check Δ +def f (n : ℤ) := n +#eval (Δ f 1) 100 +-- #check (by (show_term unfold Δ) : Δ f 0=0) +end section + + + +-- (NO need to prove another direction) Constant polynomial function = constant function +lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : + (F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by + constructor + · intro h + rintro r + refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ + simp only [Rat.ofNat_num, Rat.ofNat_den] + rw [h] + simp + · sorry + +-- Shifting doesn't change the polynomial type +lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by + simp only [PolyType] + rcases hf with ⟨F, hh⟩ + rcases hh with ⟨N,ss⟩ + sorry + +-- PolyType 0 = constant function +lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), + (N ≤ n → f n = c)) ∧ c ≠ 0) := by + constructor + · rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩ + have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl + have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by + have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := + ⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩ + cases' HH with c HHH + have HHHH : ∃ (d : ℤ), d = c := + ⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩ + cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩ + rcases this2 with ⟨c, hthis2⟩ + use c; use N; intro n + constructor + · have this4 : Polynomial.eval (n : ℚ) Poly = c := by + rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast] + exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1]) + · intro c0 + simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero] + at this1 + · rintro ⟨c, N, hh⟩ + have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2 + exact ⟨Polynomial.C (c : ℚ), N, fun n Nn + => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) + (c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩ + +-- Δ of 0 times preserves the function +lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto + +-- Δ of 1 times decreaes the polynomial type by one +lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by + sorry + +-- The "reverse" of Δ of 1 times increases the polynomial type by one +lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by + sorry + +-- Δ of d times maps polynomial of degree d to polynomial of degree 0 +lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by + sorry +lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by + induction' d with d hd + · intro f h + rw [Δ_0] + tauto + · intro f hf + have this1 : PolyType f (d + 1) := by tauto + have this2 : PolyType (Δ f (d + 1)) 0 := by + have this3 : PolyType (Δ f 1) d := by + have this5 : PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f d + exact this5 this1 + clear hf + specialize hd (Δ f 1) + have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto + rw [Δ_1_s_equiv_Δ_s_1] at this4 + tauto + tauto +lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h + + +-- [BH, 4.1.2] (a) => (b) +-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d +lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by + induction' d with d hd + + -- Base case + · intro f + intro h + rcases h with ⟨c, N, hh⟩ + rw [PolyType_0] + use c + use N + tauto + + -- Induction step + · intro f + intro h + rcases h with ⟨c, N, h⟩ + have this : PolyType f (d + 1) := by + rcases h with ⟨H,c0⟩ + let g := (Δ f 1) + -- let g := fun (x : ℤ) => (f (x + 1) - f (x)) + have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by + use c; use N + constructor + · intro n + specialize H n + intro h + have this : Δ f (d + 1) n = c := by tauto + rw [←this] + rw [Δ_1_s_equiv_Δ_s_1] + · tauto + have this2 : PolyType g d := by + apply hd + tauto + exact Δ_1_ f d this2 + tauto +lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h + + + + + +-- [BH, 4.1.2] (a) <= (b) +-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 +lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by + intro h + have : PolyType (Δ f d) 0 := by + apply Δ_d_PolyType_d_to_PolyType_0 + exact h + have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by + rw [←PolyType_0] + exact this + exact this1 +end + +-- @Additive lemma of length for a SES +-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 +section +open LinearMap + +-- Definitiion of the length of a module +noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤} +#check length ℤ ℤ + +-- Definition of a SES (Short Exact Sequence) +-- @[ext] +structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B] + [AddCommGroup C] [Module R A] [Module R B] [Module R C] + (f : A →ₗ[R] B) (g : B →ₗ[R] C) + where + left_exact : LinearMap.ker f = ⊥ + middle_exact : LinearMap.range f = LinearMap.ker g + right_exact : LinearMap.range g = ⊤ + +-- Additive lemma +lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] + (f : A →ₗ[R] B) (g : B →ₗ[R] C) + : (SES f g) → ((length R A) + (length R C) = (length R B)) := by + intro h + rcases h with ⟨left_exact, middle_exact, right_exact⟩ + sorry + +end section \ No newline at end of file