mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
more stuff
This commit is contained in:
parent
cf2cedb093
commit
24f6994a65
1 changed files with 12 additions and 29 deletions
|
@ -25,23 +25,10 @@ namespace Ideal
|
||||||
|
|
||||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||||
|
|
||||||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
|
||||||
|
|
||||||
-- noncomputable def krullDim (R : Type) [CommRing R] :
|
|
||||||
-- WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
|
||||||
|
|
||||||
--variable {R}
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
|
||||||
-- (1) The closure of a prime P is V(P)
|
|
||||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
|
||||||
-- (3) the irreducible components are V(P) for P minimal prime
|
|
||||||
|
|
||||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||||
-- if every element is nilpotent
|
-- if every element is nilpotent
|
||||||
class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
||||||
h : ∀ x ∈ I, IsNilpotent x
|
h : ∀ x ∈ I, IsNilpotent x
|
||||||
#check Ideal.IsLocallyNilpotent
|
|
||||||
end Ideal
|
end Ideal
|
||||||
|
|
||||||
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
|
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
|
||||||
|
@ -108,7 +95,6 @@ lemma containment_radical_power_containment :
|
||||||
-- : I • (⊤ : Submodule R M) = 0
|
-- : I • (⊤ : Submodule R M) = 0
|
||||||
-- → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
-- → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||||
|
|
||||||
-- Does lean know that M/IM is a R/I module?
|
|
||||||
-- Use 10.52.5
|
-- Use 10.52.5
|
||||||
|
|
||||||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||||
|
@ -118,7 +104,6 @@ lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.F
|
||||||
(∃ m : ℕ, Module.length R M ≤ m) := by sorry
|
(∃ m : ℕ, Module.length R M ≤ m) := by sorry
|
||||||
-- intro IisFG IisMaximal MisFinite power
|
-- intro IisFG IisMaximal MisFinite power
|
||||||
-- rcases power with ⟨n, npower⟩
|
-- rcases power with ⟨n, npower⟩
|
||||||
-- how do I get a generating set?
|
|
||||||
|
|
||||||
open Finset
|
open Finset
|
||||||
|
|
||||||
|
@ -169,14 +154,13 @@ abbrev Prod_of_localization :=
|
||||||
-- unfold Prod_of_localization
|
-- unfold Prod_of_localization
|
||||||
-- infer_instance
|
-- infer_instance
|
||||||
|
|
||||||
def foo : Prod_of_localization R →+* R where
|
-- def foo : Prod_of_localization R →+* R where
|
||||||
toFun := sorry
|
-- toFun := sorry
|
||||||
-- invFun := sorry
|
-- -- invFun := sorry
|
||||||
--left_inv := sorry
|
-- --left_inv := sorry
|
||||||
--right_inv := sorry
|
-- --right_inv := sorry
|
||||||
map_mul' := sorry
|
-- map_mul' := sorry
|
||||||
map_add' := sorry
|
-- map_add' := sorry
|
||||||
|
|
||||||
|
|
||||||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||||||
(h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
|
(h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
|
||||||
|
@ -196,17 +180,16 @@ lemma primes_of_Artinian_are_maximal
|
||||||
|
|
||||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||||
|
-- (1) The closure of a prime P is V(P)
|
||||||
|
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||||
|
-- (3) the irreducible components are V(P) for P minimal prime
|
||||||
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
|
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
|
||||||
lemma irred_comp_minmimal_prime (X) :
|
lemma irred_comp_minmimal_prime (X) :
|
||||||
X ∈ irreducibleComponents (PrimeSpectrum R)
|
X ∈ irreducibleComponents (PrimeSpectrum R)
|
||||||
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
|
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
-- Lemma: localization of Noetherian ring is Noetherian
|
|
||||||
-- lemma localization_of_Noetherian_at_prime [IsNoetherianRing R]
|
|
||||||
-- (atprime: Ideal.IsPrime I) :
|
|
||||||
-- IsNoetherianRing (Localization.AtPrime I) := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||||
lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
||||||
|
@ -241,7 +224,7 @@ lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
||||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||||
specialize RisNoetherian (F X.1 X.2).1
|
specialize RisNoetherian (F X.1 X.2).1
|
||||||
exact RisNoetherian
|
exact RisNoetherian
|
||||||
have modulefg : Module.Finite R (Loc X) := by sorry -- not sure if this is true
|
have modulefg : Module.Finite R (Loc X) := by sorry -- this is wrong
|
||||||
specialize PrimeIsMaximal X
|
specialize PrimeIsMaximal X
|
||||||
specialize powerannihilates X
|
specialize powerannihilates X
|
||||||
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
|
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
|
||||||
|
|
Loading…
Reference in a new issue