mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Little bit of golfing
This commit is contained in:
parent
4080cec961
commit
23064c442b
1 changed files with 9 additions and 11 deletions
|
@ -130,8 +130,6 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
simp [field_prime_height_zero]
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
unfold krullDim at h
|
|
||||||
simp [height] at h
|
|
||||||
by_contra x
|
by_contra x
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||||
|
@ -140,16 +138,16 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
||||||
by_contra a
|
by_contra a
|
||||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||||
contradiction
|
contradiction
|
||||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
have pos_height : ¬ (height P') ≤ 0 := by
|
||||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
|
||||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
|
||||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
unfold height
|
||||||
rw [←Set.one_le_chainHeight_iff] at this
|
rw [←Set.one_le_chainHeight_iff] at this
|
||||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||||
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
have nonpos_height : height P' ≤ 0 := by
|
||||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
have := height_le_krullDim P'
|
||||||
rw [iSup_le_iff] at this
|
rw [h] at this
|
||||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
aesop
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
|
@ -167,10 +165,10 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R ≤ krullDim (Polynomial R) + 1 := sorry
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R = krullDim (Polynomial R) + 1 := sorry
|
krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
lemma height_eq_dim_localization :
|
lemma height_eq_dim_localization :
|
||||||
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
||||||
|
|
Loading…
Reference in a new issue