mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #15 from GTBarkley/grant
playing with mathlib definitions of chains
This commit is contained in:
commit
1f6dd08dd4
1 changed files with 54 additions and 5 deletions
|
@ -1,12 +1,61 @@
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
|
||||
def hello : IO Unit := do
|
||||
IO.println "Hello, World!"
|
||||
|
||||
#eval hello
|
||||
|
||||
#check (p q : PrimeSpectrum _) → (p ≤ q)
|
||||
#check Preorder (PrimeSpectrum _)
|
||||
|
||||
#check krullDim (PrimeSpectrum _)
|
||||
-- Dimension of a ring
|
||||
#check krullDim (PrimeSpectrum _)
|
||||
|
||||
-- Length of a module
|
||||
#check krullDim (Submodule _ _)
|
||||
|
||||
#check JordanHolderLattice
|
||||
|
||||
|
||||
variable {α : Type _} [Preorder α] (s : Set α)
|
||||
|
||||
def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry
|
||||
|
||||
def series_to_chain : StrictSeries s → s.subchain
|
||||
| ⟨length, toFun, strictMono⟩ =>
|
||||
⟨ finFun_to_list (fun x => toFun x),
|
||||
sorry⟩
|
||||
|
||||
|
||||
-- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work
|
||||
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
|
||||
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
|
||||
lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop ℕ)) = krullDim s := by
|
||||
intro hs
|
||||
unfold Set.chainHeight
|
||||
unfold krullDim
|
||||
have hKrullSome : ∃n, krullDim s = some n := by
|
||||
|
||||
sorry
|
||||
-- norm_cast
|
||||
sorry
|
||||
|
||||
namespace Ideal
|
||||
noncomputable def krullDim (R : Type _) [CommRing R] :=
|
||||
Set.chainHeight (Set.univ : Set (PrimeSpectrum R))
|
||||
|
||||
def krullDimGE (R : Type _) [CommRing R] (n : ℕ) :=
|
||||
∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1
|
||||
|
||||
def krullDimLE (R : Type _) [CommRing R] (n : ℕ) :=
|
||||
∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1
|
||||
|
||||
end Ideal
|
||||
|
||||
open Ideal
|
||||
|
||||
lemma krullDim_le (R : Type _) [CommRing R] : krullDimLE R n ↔ Ideal.krullDim R ≤ n := sorry
|
||||
lemma krullDim_ge (R : Type _) [CommRing R] : krullDimGE R n ↔ Ideal.krullDim R ≥ n := sorry
|
||||
|
||||
|
||||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||||
#check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
Loading…
Reference in a new issue