From 1f4505f8ab7e3d2c28ab8b2f998eaca461855dad Mon Sep 17 00:00:00 2001 From: Sameer Savkar Date: Tue, 13 Jun 2023 16:00:58 -0700 Subject: [PATCH] added two lemmas --- CommAlg/sameer(artinian-rings).lean | 59 +++++++++++++++++++++++++++-- 1 file changed, 56 insertions(+), 3 deletions(-) diff --git a/CommAlg/sameer(artinian-rings).lean b/CommAlg/sameer(artinian-rings).lean index 381680b..e6bb667 100644 --- a/CommAlg/sameer(artinian-rings).lean +++ b/CommAlg/sameer(artinian-rings).lean @@ -3,13 +3,66 @@ import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Ideal.Quotient import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.RingTheory.DedekindDomain.DVR + + +lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry + + +lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R] +(IsArt : IsArtinianRing R) : IsField (R) := by +-- Assume P is nonzero and R is Artinian +-- Localize at P; Then R_P is Artinian; +-- Assume R_P is not a field +-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent +-- Maximal ideal is zero since local ring is a domain +-- a contradiction since P is nonzero +-- Therefore, R is a field +have maxIdeal := Ideal.exists_maximal R +obtain ⟨m,hm⟩ := maxIdeal +have h:= Ideal.primeCompl_le_nonZeroDivisors m +have artRP : IsDomain _ := IsLocalization.isDomain_localization h +have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance +have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization + (Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot +have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization + (Ideal.primeCompl m))) bot_ne_top +rw [this] at h' +have := IsNilpotent.eq_zero h' +rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this +by_contra h'' +--by_cases h'' : m = ⊥ +have := Ring.ne_bot_of_isMaximal_of_not_isField hm h'' +have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m)) +contradiction -lemma quotientRing_is_Artinian (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R): -IsArtinianRing (R⧸I) := by sorry #check Ideal.IsPrime +#check IsDomain + +lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R] + (I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R ⧸ I) := + isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt) + +lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R) +(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P := +by +-- if R is Artinian and P is prime then R/P is Integral Domain +-- which is Artinian Domain +-- R⧸P is a field by the above lemma +-- P is maximal + + have : IsDomain (R⧸P) := Ideal.Quotient.isDomain P + have artRP : IsArtinianRing (R⧸P) := by + exact isArtinianRing_of_quotient_of_artinian R P IsArt + + +-- Then R/I is Artinian + -- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by + +-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I + -lemma IsPrimeMaximal (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime I) : Ideal.IsMaximal I := by sorry -- Use Stacks project proof since it's broken into lemmas