mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #78 from SinTan1729/main
Proved one side of poly_over_field
This commit is contained in:
commit
1cf31c2590
2 changed files with 48 additions and 2 deletions
|
@ -88,7 +88,7 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
|||
fun _ ↦ (WithBot.coe_le rfl).mpr (H1 _)
|
||||
rw [←iSup_le_iff] at H1
|
||||
have : ((n : ℕ∞) : WithBot ℕ∞) ≤ (((n - 1 : ℕ) : ℕ∞) : WithBot ℕ∞) := le_trans H H1
|
||||
norm_cast at this
|
||||
norm_cast at this
|
||||
have that : n - 1 < n := by refine Nat.sub_lt h (by norm_num)
|
||||
apply lt_irrefl (n-1) (trans that this)
|
||||
· rintro ⟨I, h⟩
|
||||
|
@ -280,7 +280,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
|||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
unfold height
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
exact not_le_of_gt (ENat.one_le_iff_pos.mp this)
|
||||
have nonpos_height : height P' ≤ 0 := by
|
||||
have := height_le_krullDim P'
|
||||
rw [h] at this
|
||||
|
|
46
CommAlg/sayantan(poly_over_field).lean
Normal file
46
CommAlg/sayantan(poly_over_field).lean
Normal file
|
@ -0,0 +1,46 @@
|
|||
import CommAlg.krull
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
-- unfold krullDim
|
||||
rw [le_antisymm_iff]
|
||||
constructor
|
||||
·
|
||||
sorry
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
exact le_trans h this
|
||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||
let X := @Polynomial.X K _
|
||||
have : IsPrime (span {X}) := by
|
||||
refine Iff.mpr (span_singleton_prime ?hp) primeX
|
||||
exact Polynomial.X_ne_zero
|
||||
let P := PrimeSpectrum.mk (span {X}) this
|
||||
unfold height
|
||||
use P
|
||||
have : ⊥ ∈ {J | J < P} := by
|
||||
simp only [Set.mem_setOf_eq]
|
||||
rw [bot_lt_iff_ne_bot]
|
||||
suffices : P.asIdeal ≠ ⊥
|
||||
· by_contra x
|
||||
rw [PrimeSpectrum.ext_iff] at x
|
||||
contradiction
|
||||
by_contra x
|
||||
simp only [span_singleton_eq_bot] at x
|
||||
have := @Polynomial.X_ne_zero K _ _
|
||||
contradiction
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
Loading…
Reference in a new issue