mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #78 from SinTan1729/main
Proved one side of poly_over_field
This commit is contained in:
commit
1cf31c2590
2 changed files with 48 additions and 2 deletions
|
@ -280,7 +280,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
||||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||||
unfold height
|
unfold height
|
||||||
rw [←Set.one_le_chainHeight_iff] at this
|
rw [←Set.one_le_chainHeight_iff] at this
|
||||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
exact not_le_of_gt (ENat.one_le_iff_pos.mp this)
|
||||||
have nonpos_height : height P' ≤ 0 := by
|
have nonpos_height : height P' ≤ 0 := by
|
||||||
have := height_le_krullDim P'
|
have := height_le_krullDim P'
|
||||||
rw [h] at this
|
rw [h] at this
|
||||||
|
|
46
CommAlg/sayantan(poly_over_field).lean
Normal file
46
CommAlg/sayantan(poly_over_field).lean
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
import CommAlg.krull
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
|
||||||
|
namespace Ideal
|
||||||
|
|
||||||
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
|
-- unfold krullDim
|
||||||
|
rw [le_antisymm_iff]
|
||||||
|
constructor
|
||||||
|
·
|
||||||
|
sorry
|
||||||
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
|
· obtain ⟨I, h⟩ := this
|
||||||
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
|
exact le_trans h this
|
||||||
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||||
|
let X := @Polynomial.X K _
|
||||||
|
have : IsPrime (span {X}) := by
|
||||||
|
refine Iff.mpr (span_singleton_prime ?hp) primeX
|
||||||
|
exact Polynomial.X_ne_zero
|
||||||
|
let P := PrimeSpectrum.mk (span {X}) this
|
||||||
|
unfold height
|
||||||
|
use P
|
||||||
|
have : ⊥ ∈ {J | J < P} := by
|
||||||
|
simp only [Set.mem_setOf_eq]
|
||||||
|
rw [bot_lt_iff_ne_bot]
|
||||||
|
suffices : P.asIdeal ≠ ⊥
|
||||||
|
· by_contra x
|
||||||
|
rw [PrimeSpectrum.ext_iff] at x
|
||||||
|
contradiction
|
||||||
|
by_contra x
|
||||||
|
simp only [span_singleton_eq_bot] at x
|
||||||
|
have := @Polynomial.X_ne_zero K _ _
|
||||||
|
contradiction
|
||||||
|
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
Loading…
Reference in a new issue