mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-01-13 15:23:47 -06:00
added final_hil_pol
This commit is contained in:
parent
aac88adc02
commit
19ef96ef49
1 changed files with 116 additions and 91 deletions
|
@ -4,6 +4,12 @@ import Mathlib.Algebra.Module.GradedModule
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.SimpleModule
|
||||||
|
import Mathlib.Algebra.Module.LinearMap
|
||||||
|
import Mathlib.Algebra.Field.Defs
|
||||||
|
import CommAlg.krull
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Setting for "library_search"
|
-- Setting for "library_search"
|
||||||
|
@ -25,6 +31,7 @@ macro "obviously" : tactic =>
|
||||||
| ring; done; dbg_trace "it was ring"
|
| ring; done; dbg_trace "it was ring"
|
||||||
| trivial; done; dbg_trace "it was trivial"
|
| trivial; done; dbg_trace "it was trivial"
|
||||||
-- | nlinarith; done
|
-- | nlinarith; done
|
||||||
|
| aesop; done; dbg_trace "it was aesop"
|
||||||
| fail "No, this is not obvious."))
|
| fail "No, this is not obvious."))
|
||||||
|
|
||||||
|
|
||||||
|
@ -39,8 +46,7 @@ section
|
||||||
|
|
||||||
-- Definition of polynomail of type d
|
-- Definition of polynomail of type d
|
||||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
|
||||||
|
|
||||||
-- Make instance of M_i being an R_0-module
|
-- Make instance of M_i being an R_0-module
|
||||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
@ -67,15 +73,30 @@ instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGr
|
||||||
|
|
||||||
-- Definition of a Hilbert function of a graded module
|
-- Definition of a Hilbert function of a graded module
|
||||||
section
|
section
|
||||||
|
|
||||||
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Ideal.krullDim (A ⧸ ((⊤ : Submodule A M).annihilator))
|
||||||
|
|
||||||
|
|
||||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
noncomputable def dimensionring { A: Type _}
|
|
||||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
|
||||||
|
|
||||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
lemma lengthfield ( k : Type _) [Field k] : length (k) (k) = 1 := by
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma equaldim ( A : Type _) [CommRing A] (I : Ideal A): dimensionmodule (A) (A ⧸ I) = Ideal.krullDim (A ⧸ I) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
lemma dim_iso ( A : Type _) (M : Type _) (N : Type _) [CommRing A] [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (h : Nonempty (M →ₗ[A] N)) : dimensionmodule A M = dimensionmodule A N := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
@ -108,6 +129,7 @@ instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GComm
|
||||||
sorry)
|
sorry)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||||
gen_in_first_piece :
|
gen_in_first_piece :
|
||||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||||
|
@ -120,66 +142,109 @@ def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
def graded_ring_morphism (𝒜 : ℤ → Type _) (ℬ : ℤ → Type _)
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (ℬ i)]
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing ℬ] (f : (⨁ i, 𝒜 i) →+* (⨁ i, ℬ i)) := ∀ i, ∀ (r : 𝒜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
||||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
|
||||||
: ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
|
||||||
∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
#check graded_morphism
|
structure GradedLinearMap (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] [DirectSum.Gmodule 𝒜 𝓝]
|
||||||
|
extends LinearMap (RingHom.id (⨁ i, 𝒜 i)) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i) where
|
||||||
|
respects_grading (i : ℤ) (r : 𝓜 i) (j : ℤ) : j ≠ i → toFun (DirectSum.of _ i r) j = 0
|
||||||
|
|
||||||
def graded_isomorphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
/-- `𝓜 →ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear maps from `𝓜` to `𝓝`. -/
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
notation:25 𝓜 " →ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearMap 𝒜 𝓜 𝓝
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
|
||||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
|
||||||
: IsLinearEquiv f := by
|
|
||||||
sorry
|
|
||||||
-- f ∈ (⨁ i, 𝓜 i) ≃ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)
|
|
||||||
-- LinearEquivClass f (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i)
|
|
||||||
-- #print IsLinearEquiv
|
|
||||||
#check graded_isomorphism
|
|
||||||
|
|
||||||
|
structure GradedLinearEquiv (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||||
|
extends (⨁ i, 𝓜 i) ≃ (⨁ i, 𝓝 i), 𝓜 →ᵍₗ[𝒜] 𝓝
|
||||||
|
|
||||||
|
/-- `𝓜 ≃ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear isomorphisms from `(⨁ i, 𝓜 i)` to `(⨁ i, 𝓝 i)`. -/
|
||||||
|
notation:25 𝓜 " ≃ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearEquiv 𝒜 𝓜 𝓝
|
||||||
|
|
||||||
def graded_submodule
|
def graded_ring_isomorphism (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑]
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
(f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i))
|
||||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
:= (graded_ring_morphism 𝒜 𝓑 f) ∧ (Function.Bijective f)
|
||||||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
|
||||||
sorry
|
def graded_ring_isomorphic (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑] := ∃ (f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i)), graded_ring_isomorphism 𝒜 𝓑 f
|
||||||
|
|
||||||
|
-- def graded_submodule
|
||||||
|
-- (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
-- [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
-- [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||||
|
-- (h (⨁ i, 𝓝 i) : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) :
|
||||||
|
-- Prop :=
|
||||||
|
-- ∃ (piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
class DirectSum.GalgebrA
|
||||||
|
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
(𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜]
|
||||||
|
extends DirectSum.Gmodule 𝒜 𝓜
|
||||||
|
|
||||||
|
-- def graded_algebra_morphism (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
-- (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜] [DirectSum.GalgebrA 𝒜 𝓜]
|
||||||
|
-- (𝓝 : ℤ → Type _) [∀ i, AddCommGroup (𝓝 i)] [DirectSum.GCommRing 𝓝] [DirectSum.GalgebrA 𝒜 𝓝]
|
||||||
|
-- (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) := (graded_ring_morphism 𝓜 𝓝 f) ∧ (GradedLinearMap 𝒜 𝓜 𝓝 toFun)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- @Quotient of a graded ring R by a graded ideal p is a graded R-alg, preserving each component
|
||||||
|
|
||||||
|
instance Quotient_of_graded_gradedring
|
||||||
|
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
|
||||||
instance Quotient_of_graded_is_graded
|
DirectSum.GCommRing (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
|
||||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
--
|
instance Quotient_of_graded_is_gradedalg
|
||||||
lemma sss
|
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
: true := by
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
|
||||||
|
DirectSum.GalgebrA 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
section
|
||||||
|
variable (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[LocalRing (𝒜 0)] (m : LocalRing.maximalIdeal (𝒜 0))
|
||||||
|
|
||||||
|
-- check if `Pi.Single` or something writes this more elegantly
|
||||||
|
def GradedOneComponent (i : ℤ) : Type _ := ite (i = 0) (𝒜 0 ⧸ LocalRing.maximalIdeal (𝒜 0)) PUnit
|
||||||
|
|
||||||
|
instance (i : ℤ) : AddMonoid (GradedOneComponent 𝒜 i) := by
|
||||||
|
unfold GradedOneComponent
|
||||||
|
sorry -- split into 0 and nonzero cases and then `inferInstance`
|
||||||
|
|
||||||
|
instance : DirectSum.Gmodule 𝒜 (GradedOneComponent 𝒜) := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lemma Graded_local [StandardGraded 𝒜] (I : Ideal (⨁ i, 𝒜 i)) (hp : (HomogeneousMax 𝒜 I)) [∀ i, Module (𝒜 0) ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i))] (art: IsArtinianRing (𝒜 0)) : (∀ (i : ℤ ), (i ≠ 0 → Nonempty (((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i)) →ₗ[𝒜 0] (𝒜 i))) ) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
lemma Quotient_of_graded_ringiso (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜](p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||||
|
-- (hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||||
|
: Nonempty (((⨁ i, (𝒜 i))⧸p) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
def Is.Graded_local (𝒜 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜] := ∃! ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I)
|
||||||
|
|
||||||
|
lemma hilfun_eq (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (iso : GradedLinearEquiv 𝒜 𝓜 𝓝)(hilbm : ℤ → ℤ) (Hhilbm: hilbert_function 𝒜 𝓜 hilbm) (hilbn : ℤ → ℤ) (Hhilbn: hilbert_function 𝒜 𝓝 hilbn) : ∀ (n : ℤ), hilbm n = hilbn n := by
|
||||||
|
sorry
|
||||||
|
|
||||||
-- If A_0 is Artinian and local, then A is graded local
|
-- If A_0 is Artinian and local, then A is graded local
|
||||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||||||
|
@ -213,11 +278,10 @@ lemma Associated_prime_of_graded_is_graded
|
||||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
|
||||||
: PolyType hilb (d - 1) := by
|
: PolyType hilb (d - 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
@ -228,7 +292,7 @@ theorem Hilbert_polynomial_d_ge_1_reduced
|
||||||
(d : ℕ) (d1 : 1 ≤ d)
|
(d : ℕ) (d1 : 1 ≤ d)
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
@ -242,48 +306,9 @@ theorem Hilbert_polynomial_d_ge_1_reduced
|
||||||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
-- (reduced version) [BH, 4.1.3] when d = 0
|
|
||||||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
|
||||||
theorem Hilbert_polynomial_d_0_reduced
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
|
||||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
|
||||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue