mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
commit
1618a7cc7e
1 changed files with 52 additions and 1 deletions
|
@ -1,10 +1,34 @@
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.JacobsonIdeal
|
||||||
import Mathlib.RingTheory.Noetherian
|
import Mathlib.RingTheory.Noetherian
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||||
|
import Mathlib.Data.Finite.Defs
|
||||||
|
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
|
||||||
|
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||||||
|
namespace Ideal
|
||||||
|
|
||||||
|
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
|
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||||
|
-- copy ends
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||||
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||||
|
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
|
||||||
|
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R]
|
variable {R : Type _} [CommRing R]
|
||||||
|
|
||||||
-- Repeats the definition by Monalisa
|
-- Repeats the definition by Monalisa
|
||||||
|
@ -14,10 +38,38 @@ noncomputable def length : krullDim (Submodule _ _)
|
||||||
-- The following is Stacks Lemma 10.60.5
|
-- The following is Stacks Lemma 10.60.5
|
||||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||||
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
#check IsNoetherianRing
|
#check IsNoetherianRing
|
||||||
|
|
||||||
|
#check krullDim
|
||||||
|
|
||||||
|
-- Repeats the definition of the length of a module by Monalisa
|
||||||
|
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||||
|
|
||||||
|
noncomputable def length := krullDim (Submodule R M)
|
||||||
|
|
||||||
|
#check length
|
||||||
|
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||||
|
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||||
|
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||||
|
lemma Jacobson_of_Artinian_is_nilpotent : Is
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- how to use namespace
|
||||||
|
|
||||||
|
namespace something
|
||||||
|
|
||||||
|
end something
|
||||||
|
|
||||||
|
open something
|
||||||
|
|
||||||
-- The following is Stacks Lemma 10.53.6
|
-- The following is Stacks Lemma 10.53.6
|
||||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||||||
|
|
||||||
|
@ -25,4 +77,3 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue