From 12e4802e51b537bf2264fd389250e87b4215ab27 Mon Sep 17 00:00:00 2001 From: Andre Date: Wed, 14 Jun 2023 16:09:44 -0400 Subject: [PATCH] added polytype --- CommAlg/poly_type.lean | 105 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 105 insertions(+) create mode 100644 CommAlg/poly_type.lean diff --git a/CommAlg/poly_type.lean b/CommAlg/poly_type.lean new file mode 100644 index 0000000..357578b --- /dev/null +++ b/CommAlg/poly_type.lean @@ -0,0 +1,105 @@ +import Mathlib.Order.KrullDimension +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Ideal.AssociatedPrime +import Mathlib.RingTheory.Artinian +import Mathlib.Order.Height + +noncomputable def length ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} + + def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] + [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I + + +def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I) + + +def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I) + +--theorem monotone_stabilizes_iff_noetherian : +-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by +-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] + +open GradedMonoid.GSmul + +open DirectSum + + +instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i) + where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) + +lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) : + of _ _ (a • m) = of _ _ a • of _ _ m := by + refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm + refine' of_eq_of_gradedMonoid_eq _ + exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _ + +instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by + letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom + exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i) + +instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by + letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) + exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) + +noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i))) + +noncomputable def dimensionring { A: Type _} + [CommRing A] := krullDim (PrimeSpectrum A) + + +noncomputable def dimensionmodule ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) ) + +-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator ) + +-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +-- [DirectSum.GCommRing 𝒜] +-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry + + +def PolyType (f : ℤ → ℤ) (d : ℕ ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly + + + +theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ) + (Hhilb: hilbert_function 𝒜 𝓜 hilb) +: PolyType hilb (d - 1) := by + sorry + + +theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ) +: true := by + sorry + +lemma ass_graded (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] +(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by +sorry + +lemma Associated_prime_of_graded_is_graded +(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] +(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) + : (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of x i}).annihilator)) := by + sorry + + +def standard_graded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := (⨁ i, 𝒜 i)