Merge pull request #17 from GTBarkley/sayantan

new: Added some definitions about short exact sequences
This commit is contained in:
Sayantan Santra 2023-06-11 23:19:30 -05:00 committed by GitHub
commit 120ea6f876
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -11,6 +11,7 @@ import Mathlib.Order.Height
import Mathlib.RingTheory.MvPolynomial.Basic
import Mathlib.RingTheory.Ideal.Over
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Algebra.Homology.ShortExact.Abelian
variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
@ -56,4 +57,22 @@ variable (I : Ideal R)
#check PrimeSpectrum.localization_comap_injective
#check PrimeSpectrum.localization_comap_range
--Theorems relating primes of a ring to primes of a quotient
#check PrimeSpectrum.range_comap_of_surjective
#check PrimeSpectrum.range_comap_of_surjective
-- There is a notion of short exact sequences but the number of theorems are lacking
-- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0
-- of R-modules, A and C being FG implies that B is FG
open CategoryTheory CategoryTheory.Limits CategoryTheory.Preadditive
variable {𝒜 : Type _} [Category 𝒜] [Abelian 𝒜]
variable {A B C A': 𝒜} {f : A ⟶ B} {g : B ⟶ C}
#check ShortExact
#check ShortExact f g
-- There are some notion of splitting as well
#check Splitting
#check LeftSplit
#check LeftSplit f g
-- And there is a theorem that left split implies splitting
#check LeftSplit.splitting
-- Similar things are there for RightSplit as well