mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge branch 'main' of github.com:GTBarkley/comm_alg into main
This commit is contained in:
commit
0e184caf23
2 changed files with 84 additions and 78 deletions
|
@ -5,7 +5,7 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|||
set_option maxHeartbeats 0
|
||||
macro "ls" : tactic => `(tactic|library_search)
|
||||
|
||||
-- New tactic "obviously"
|
||||
-- From Kyle : New tactic "obviously"
|
||||
macro "obviously" : tactic =>
|
||||
`(tactic| (
|
||||
first
|
||||
|
@ -15,6 +15,7 @@ macro "obviously" : tactic =>
|
|||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||
| rfl; done; dbg_trace "it was rfl"
|
||||
| norm_num; done; dbg_trace "it was norm_num"
|
||||
| norm_cast; done; dbg_trace "it was norm_cast"
|
||||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||
-- | gcongr; done
|
||||
| ring; done; dbg_trace "it was ring"
|
||||
|
@ -40,7 +41,7 @@ example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
|||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
|
||||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||
rw [F]
|
||||
simp
|
||||
simp [simp]
|
||||
|
||||
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||||
|
||||
|
@ -50,11 +51,11 @@ end section
|
|||
noncomputable section
|
||||
-- Polynomial type of degree d
|
||||
@[simp]
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) :=
|
||||
∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧
|
||||
d = Polynomial.degree Poly
|
||||
section
|
||||
|
||||
#check PolyType
|
||||
|
||||
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||||
unfold PolyType
|
||||
sorry
|
||||
|
@ -69,14 +70,12 @@ def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
|||
|
||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||||
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||||
constructor
|
||||
· intro h
|
||||
rintro r
|
||||
· intro h r
|
||||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
|
||||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||
rw [h]
|
||||
simp
|
||||
simp [h]
|
||||
· sorry
|
||||
|
||||
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
|
||||
|
@ -84,22 +83,15 @@ lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial
|
|||
sorry
|
||||
|
||||
-- Shifting doesn't change the polynomial type
|
||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||
simp only [PolyType]
|
||||
rcases hf with ⟨F, hh⟩
|
||||
rcases hh with ⟨N,s1, s2⟩
|
||||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||
exact Polynomial_shifting F s
|
||||
rcases this with ⟨Poly, h1, h2⟩
|
||||
use Poly
|
||||
use N
|
||||
constructor
|
||||
· intro n
|
||||
specialize s1 (n + s)
|
||||
intro hN
|
||||
have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by
|
||||
sorry
|
||||
sorry
|
||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℕ)
|
||||
(hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||
rcases hf with ⟨F, ⟨N, s1, s2⟩⟩
|
||||
rcases (Polynomial_shifting F s) with ⟨Poly, h1, h2⟩
|
||||
use Poly, N; constructor
|
||||
· intro n hN
|
||||
have this1 : f (n + s) = Polynomial.eval (n + (s : ℚ)) F := by
|
||||
rw [s1 (n + s) (by linarith)]; norm_cast
|
||||
rw [←hfg n, this1]; exact (h1 n).symm
|
||||
· rw [h2, s2]
|
||||
|
||||
-- PolyType 0 = constant function
|
||||
|
@ -132,8 +124,8 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
|||
|
||||
-- Δ of 0 times preserves the function
|
||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
||||
--simp only [Δ]
|
||||
-- Δ of 1 times decreaes the polynomial type by one
|
||||
|
||||
-- Δ of 1 times decreaes the polynomial type by one --can be golfed
|
||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||
intro h
|
||||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||
|
@ -186,53 +178,21 @@ lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d
|
|||
|
||||
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||||
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||||
intro h
|
||||
rintro ⟨P, N, ⟨h1, h2⟩⟩
|
||||
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||||
rcases h with ⟨P, N, h⟩
|
||||
rcases h with ⟨h1, h2⟩
|
||||
let G := fun (q : ℤ) => f (N)
|
||||
sorry
|
||||
|
||||
|
||||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n →
|
||||
(Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||
induction' d with d hd
|
||||
|
||||
-- Base case
|
||||
· intro f
|
||||
intro h
|
||||
rcases h with ⟨c, N, hh⟩
|
||||
rw [PolyType_0]
|
||||
use c
|
||||
use N
|
||||
tauto
|
||||
|
||||
-- Induction step
|
||||
· intro f
|
||||
intro h
|
||||
rcases h with ⟨c, N, h⟩
|
||||
have this : PolyType f (d + 1) := by
|
||||
rcases h with ⟨H,c0⟩
|
||||
let g := (Δ f 1)
|
||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
||||
use c; use N
|
||||
constructor
|
||||
· intro n
|
||||
specialize H n
|
||||
intro h
|
||||
have this : Δ f (d + 1) n = c := by tauto
|
||||
rw [←this]
|
||||
rw [Δ_1_s_equiv_Δ_s_1]
|
||||
· tauto
|
||||
have this2 : PolyType g d := by
|
||||
apply hd
|
||||
tauto
|
||||
exact Δ_1_ f d this2
|
||||
exact this
|
||||
· rintro f ⟨c, N, hh⟩; rw [PolyType_0 f]; exact ⟨c, N, hh⟩
|
||||
· exact fun f ⟨c, N, ⟨H, c0⟩⟩ =>
|
||||
Δ_1_ f d (hd (Δ f 1) ⟨c, N, fun n h => by rw [← H n h, Δ_1_s_equiv_Δ_s_1], c0⟩)
|
||||
|
||||
-- [BH, 4.1.2] (a) => (b)
|
||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
||||
sorry
|
||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
|
||||
|
||||
-- [BH, 4.1.2] (a) <= (b)
|
||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||
|
@ -241,6 +201,7 @@ lemma b_to_a (f : ℤ → ℤ) (d : ℕ) (poly : PolyType f d) :
|
|||
rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly
|
||||
|
||||
end
|
||||
|
||||
-- @Additive lemma of length for a SES
|
||||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||
section
|
||||
|
|
|
@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import CommAlg.krull
|
||||
|
||||
open PiNotation
|
||||
|
@ -43,6 +44,8 @@ class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
|||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
@ -169,15 +172,15 @@ abbrev Prod_of_localization :=
|
|||
def foo : Prod_of_localization R →+* R where
|
||||
toFun := sorry
|
||||
-- invFun := sorry
|
||||
left_inv := sorry
|
||||
right_inv := sorry
|
||||
--left_inv := sorry
|
||||
--right_inv := sorry
|
||||
map_mul' := sorry
|
||||
map_add' := sorry
|
||||
|
||||
|
||||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||||
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
|
||||
Prod_of_localization R ≃+* R := by sorry
|
||||
(h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
|
||||
R ≃+* Prod_of_localization R := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
|
@ -193,18 +196,61 @@ lemma primes_of_Artinian_are_maximal
|
|||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
|
||||
lemma irred_comp_minmimal_prime (X) :
|
||||
X ∈ irreducibleComponents (PrimeSpectrum R)
|
||||
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
|
||||
sorry
|
||||
|
||||
sorry
|
||||
-- Lemma: localization of Noetherian ring is Noetherian
|
||||
-- lemma localization_of_Noetherian_at_prime [IsNoetherianRing R]
|
||||
-- (atprime: Ideal.IsPrime I) :
|
||||
-- IsNoetherianRing (Localization.AtPrime I) := by sorry
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 → IsArtinianRing R := by
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have := fun X => (irred_comp_minmimal_prime R X).mp
|
||||
choose F hf using this
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
-- have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
-- sorry
|
||||
--let P := fun
|
||||
rw [← ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have PrimeIsMaximal : ∀ X : Z, Ideal.IsMaximal (F X X.2).1 := by
|
||||
intro X
|
||||
have prime : Ideal.IsPrime (F X X.2).1 := (F X X.2).2.1.1
|
||||
rw [Ideal.dim_le_zero_iff] at dimzero
|
||||
exact dimzero ⟨_, prime⟩
|
||||
have JacLocallyNil : Ideal.IsLocallyNilpotent (RingJacobson R) := by sorry
|
||||
let Loc := fun X : Z ↦ Localization.AtPrime (F X.1 X.2).1
|
||||
have LocNoetherian : ∀ X, IsNoetherianRing (Loc X) := by
|
||||
intro X
|
||||
sorry
|
||||
-- apply IsLocalization.isNoetherianRing (F X.1 X.2).1 (Loc X) RisNoetherian
|
||||
have Locdimzero : ∀ X, Ideal.krullDim (Loc X) ≤ 0 := by sorry
|
||||
have powerannihilates : ∀ X, ∃ n : ℕ,
|
||||
((F X.1 X.2).1) ^ n • (⊤: Submodule R (Loc X)) = 0 := by sorry
|
||||
have LocFinitelength : ∀ X, ∃ n : ℕ, Module.length R (Loc X) ≤ n := by
|
||||
intro X
|
||||
have idealfg : Ideal.FG (F X.1 X.2).1 := by
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (F X.1 X.2).1
|
||||
exact RisNoetherian
|
||||
have modulefg : Module.Finite R (Loc X) := by sorry -- not sure if this is true
|
||||
specialize PrimeIsMaximal X
|
||||
specialize powerannihilates X
|
||||
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
|
||||
have RingFinitelength : ∃ n : ℕ, Module.length R R ≤ n := by sorry
|
||||
rw [IsArtinian_iff_finite_length]
|
||||
exact RingFinitelength
|
||||
|
||||
lemma dim_le_zero_Noetherian_if_Artinian (R : Type _) [CommRing R] :
|
||||
IsArtinianRing R → IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 := by
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
|
@ -213,7 +259,6 @@ lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
intro I
|
||||
apply primes_of_Artinian_are_maximal
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue