Merge branch 'main' of github.com:GTBarkley/comm_alg into main

This commit is contained in:
leopoldmayer 2023-06-16 14:54:43 -07:00
commit 0e184caf23
2 changed files with 84 additions and 78 deletions

View file

@ -5,7 +5,7 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
set_option maxHeartbeats 0 set_option maxHeartbeats 0
macro "ls" : tactic => `(tactic|library_search) macro "ls" : tactic => `(tactic|library_search)
-- New tactic "obviously" -- From Kyle : New tactic "obviously"
macro "obviously" : tactic => macro "obviously" : tactic =>
`(tactic| ( `(tactic| (
first first
@ -15,6 +15,7 @@ macro "obviously" : tactic =>
| simp; tauto; done; dbg_trace "it was simp tauto" | simp; tauto; done; dbg_trace "it was simp tauto"
| rfl; done; dbg_trace "it was rfl" | rfl; done; dbg_trace "it was rfl"
| norm_num; done; dbg_trace "it was norm_num" | norm_num; done; dbg_trace "it was norm_num"
| norm_cast; done; dbg_trace "it was norm_cast"
| /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith" | /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith"
-- | gcongr; done -- | gcongr; done
| ring; done; dbg_trace "it was ring" | ring; done; dbg_trace "it was ring"
@ -40,7 +41,7 @@ example : Polynomial.eval (100 : ) F = (2 : ) := by
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
simp only [Rat.ofNat_num, Rat.ofNat_den] simp only [Rat.ofNat_num, Rat.ofNat_den]
rw [F] rw [F]
simp simp [simp]
-- Treat polynomial f ∈ [X] as a function f : -- Treat polynomial f ∈ [X] as a function f :
@ -50,11 +51,11 @@ end section
noncomputable section noncomputable section
-- Polynomial type of degree d -- Polynomial type of degree d
@[simp] @[simp]
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), (∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly) ∧ d = Polynomial.degree Poly def PolyType (f : ) (d : ) :=
∃ Poly : Polynomial , ∃ (N : ), (∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly) ∧
d = Polynomial.degree Poly
section section
#check PolyType
example (f : ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by example (f : ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
unfold PolyType unfold PolyType
sorry sorry
@ -69,14 +70,12 @@ def Δ : () → → ()
-- (NO need to prove another direction) Constant polynomial function = constant function -- (NO need to prove another direction) Constant polynomial function = constant function
lemma Poly_constant (F : Polynomial ) (c : ) : lemma Poly_constant (F : Polynomial ) (c : ) :
(F = Polynomial.C (c : )) ↔ (∀ r : , (Polynomial.eval r F) = (c : )) := by (F = Polynomial.C (c : )) ↔ (∀ r : , (Polynomial.eval r F) = (c : )) := by
constructor constructor
· intro h · intro h r
rintro r
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
simp only [Rat.ofNat_num, Rat.ofNat_den] simp only [Rat.ofNat_num, Rat.ofNat_den]
rw [h] simp [h]
simp
· sorry · sorry
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X) -- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
@ -84,22 +83,15 @@ lemma Polynomial_shifting (F : Polynomial ) (s : ) : ∃ (G : Polynomial
sorry sorry
-- Shifting doesn't change the polynomial type -- Shifting doesn't change the polynomial type
lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : ) (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : )
simp only [PolyType] (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by
rcases hf with ⟨F, hh⟩ rcases hf with ⟨F, ⟨N, s1, s2⟩⟩
rcases hh with ⟨N,s1, s2⟩ rcases (Polynomial_shifting F s) with ⟨Poly, h1, h2⟩
have this : ∃ (G : Polynomial ), (∀ (x : ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by use Poly, N; constructor
exact Polynomial_shifting F s · intro n hN
rcases this with ⟨Poly, h1, h2⟩ have this1 : f (n + s) = Polynomial.eval (n + (s : )) F := by
use Poly rw [s1 (n + s) (by linarith)]; norm_cast
use N rw [←hfg n, this1]; exact (h1 n).symm
constructor
· intro n
specialize s1 (n + s)
intro hN
have this1 : f (n + s) = Polynomial.eval (n + s : ) F := by
sorry
sorry
· rw [h2, s2] · rw [h2, s2]
-- PolyType 0 = constant function -- PolyType 0 = constant function
@ -132,8 +124,8 @@ lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N :
-- Δ of 0 times preserves the function -- Δ of 0 times preserves the function
lemma Δ_0 (f : ) : (Δ f 0) = f := by rfl lemma Δ_0 (f : ) : (Δ f 0) = f := by rfl
--simp only [Δ]
-- Δ of 1 times decreaes the polynomial type by one -- Δ of 1 times decreaes the polynomial type by one --can be golfed
lemma Δ_1 (f : ) (d : ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by lemma Δ_1 (f : ) (d : ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
intro h intro h
simp only [PolyType, Δ, Int.cast_sub, exists_and_right] simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
@ -186,53 +178,21 @@ lemma Δ_d_PolyType_d_to_PolyType_0 (f : ) (d : ): PolyType f d
-- The "reverse" of Δ of 1 times increases the polynomial type by one -- The "reverse" of Δ of 1 times increases the polynomial type by one
lemma Δ_1_ (f : ) (d : ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by lemma Δ_1_ (f : ) (d : ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
intro h rintro ⟨P, N, ⟨h1, h2⟩⟩
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right] simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
rcases h with ⟨P, N, h⟩
rcases h with ⟨h1, h2⟩
let G := fun (q : ) => f (N) let G := fun (q : ) => f (N)
sorry sorry
lemma foo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n →
lemma foo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
induction' d with d hd induction' d with d hd
· rintro f ⟨c, N, hh⟩; rw [PolyType_0 f]; exact ⟨c, N, hh⟩
-- Base case · exact fun f ⟨c, N, ⟨H, c0⟩⟩ =>
· intro f Δ_1_ f d (hd (Δ f 1) ⟨c, N, fun n h => by rw [← H n h, Δ_1_s_equiv_Δ_s_1], c0⟩)
intro h
rcases h with ⟨c, N, hh⟩
rw [PolyType_0]
use c
use N
tauto
-- Induction step
· intro f
intro h
rcases h with ⟨c, N, h⟩
have this : PolyType f (d + 1) := by
rcases h with ⟨H,c0⟩
let g := (Δ f 1)
have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
use c; use N
constructor
· intro n
specialize H n
intro h
have this : Δ f (d + 1) n = c := by tauto
rw [←this]
rw [Δ_1_s_equiv_Δ_s_1]
· tauto
have this2 : PolyType g d := by
apply hd
tauto
exact Δ_1_ f d this2
exact this
-- [BH, 4.1.2] (a) => (b) -- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
sorry
-- [BH, 4.1.2] (a) <= (b) -- [BH, 4.1.2] (a) <= (b)
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 -- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
@ -241,6 +201,7 @@ lemma b_to_a (f : ) (d : ) (poly : PolyType f d) :
rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly
end end
-- @Additive lemma of length for a SES -- @Additive lemma of length for a SES
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 -- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
section section

View file

@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi import Mathlib.Algebra.Ring.Pi
import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Finiteness
import Mathlib.Util.PiNotation import Mathlib.Util.PiNotation
import Mathlib.RingTheory.Ideal.MinimalPrime
import CommAlg.krull import CommAlg.krull
open PiNotation open PiNotation
@ -43,6 +44,8 @@ class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
#check Ideal.IsLocallyNilpotent #check Ideal.IsLocallyNilpotent
end Ideal end Ideal
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
-- Repeats the definition of the length of a module by Monalisa -- Repeats the definition of the length of a module by Monalisa
variable (R : Type _) [CommRing R] (I J : Ideal R) variable (R : Type _) [CommRing R] (I J : Ideal R)
variable (M : Type _) [AddCommMonoid M] [Module R M] variable (M : Type _) [AddCommMonoid M] [Module R M]
@ -169,15 +172,15 @@ abbrev Prod_of_localization :=
def foo : Prod_of_localization R →+* R where def foo : Prod_of_localization R →+* R where
toFun := sorry toFun := sorry
-- invFun := sorry -- invFun := sorry
left_inv := sorry --left_inv := sorry
right_inv := sorry --right_inv := sorry
map_mul' := sorry map_mul' := sorry
map_add' := sorry map_add' := sorry
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)] def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) : (h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
Prod_of_localization R ≃+* R := by sorry R ≃+* Prod_of_localization R := by sorry
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod -- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length : lemma IsArtinian_iff_finite_length :
@ -193,18 +196,61 @@ lemma primes_of_Artinian_are_maximal
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals -- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
lemma irred_comp_minmimal_prime (X) :
X ∈ irreducibleComponents (PrimeSpectrum R)
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
sorry
-- Lemma: localization of Noetherian ring is Noetherian
-- lemma localization_of_Noetherian_at_prime [IsNoetherianRing R]
-- (atprime: Ideal.IsPrime I) :
-- IsNoetherianRing (Localization.AtPrime I) := by sorry
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0 -- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] : lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 → IsArtinianRing R := by
constructor
rintro ⟨RisNoetherian, dimzero⟩ rintro ⟨RisNoetherian, dimzero⟩
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
have := fun X => (irred_comp_minmimal_prime R X).mp
choose F hf using this
let Z := irreducibleComponents (PrimeSpectrum R) let Z := irreducibleComponents (PrimeSpectrum R)
have Zfinite : Set.Finite Z := by -- have Zfinite : Set.Finite Z := by
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_ -- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
-- sorry
--let P := fun
rw [← ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
have PrimeIsMaximal : ∀ X : Z, Ideal.IsMaximal (F X X.2).1 := by
intro X
have prime : Ideal.IsPrime (F X X.2).1 := (F X X.2).2.1.1
rw [Ideal.dim_le_zero_iff] at dimzero
exact dimzero ⟨_, prime⟩
have JacLocallyNil : Ideal.IsLocallyNilpotent (RingJacobson R) := by sorry
let Loc := fun X : Z ↦ Localization.AtPrime (F X.1 X.2).1
have LocNoetherian : ∀ X, IsNoetherianRing (Loc X) := by
intro X
sorry sorry
-- apply IsLocalization.isNoetherianRing (F X.1 X.2).1 (Loc X) RisNoetherian
sorry have Locdimzero : ∀ X, Ideal.krullDim (Loc X) ≤ 0 := by sorry
have powerannihilates : ∀ X, ∃ n : ,
((F X.1 X.2).1) ^ n • (: Submodule R (Loc X)) = 0 := by sorry
have LocFinitelength : ∀ X, ∃ n : , Module.length R (Loc X) ≤ n := by
intro X
have idealfg : Ideal.FG (F X.1 X.2).1 := by
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
specialize RisNoetherian (F X.1 X.2).1
exact RisNoetherian
have modulefg : Module.Finite R (Loc X) := by sorry -- not sure if this is true
specialize PrimeIsMaximal X
specialize powerannihilates X
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
have RingFinitelength : ∃ n : , Module.length R R ≤ n := by sorry
rw [IsArtinian_iff_finite_length]
exact RingFinitelength
lemma dim_le_zero_Noetherian_if_Artinian (R : Type _) [CommRing R] :
IsArtinianRing R → IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 := by
intro RisArtinian intro RisArtinian
constructor constructor
apply finite_length_is_Noetherian apply finite_length_is_Noetherian
@ -213,7 +259,6 @@ lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
intro I intro I
apply primes_of_Artinian_are_maximal apply primes_of_Artinian_are_maximal
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :