mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 07:08:36 -06:00
commit
0a9d0736d2
1 changed files with 314 additions and 0 deletions
314
CommAlg/final_hil_pol.lean
Normal file
314
CommAlg/final_hil_pol.lean
Normal file
|
@ -0,0 +1,314 @@
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.SimpleModule
|
||||
import Mathlib.Algebra.Module.LinearMap
|
||||
import Mathlib.Algebra.Field.Defs
|
||||
import CommAlg.krull
|
||||
|
||||
|
||||
|
||||
-- Setting for "library_search"
|
||||
set_option maxHeartbeats 0
|
||||
macro "ls" : tactic => `(tactic|library_search)
|
||||
|
||||
-- New tactic "obviously"
|
||||
macro "obviously" : tactic =>
|
||||
`(tactic| (
|
||||
first
|
||||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||
| simp; done; dbg_trace "it was simp"
|
||||
| tauto; done; dbg_trace "it was tauto"
|
||||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||
| rfl; done; dbg_trace "it was rfl"
|
||||
| norm_num; done; dbg_trace "it was norm_num"
|
||||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||
-- | gcongr; done
|
||||
| ring; done; dbg_trace "it was ring"
|
||||
| trivial; done; dbg_trace "it was trivial"
|
||||
-- | nlinarith; done
|
||||
| aesop; done; dbg_trace "it was aesop"
|
||||
| fail "No, this is not obvious."))
|
||||
|
||||
|
||||
|
||||
open GradedMonoid.GSmul
|
||||
open DirectSum
|
||||
|
||||
|
||||
|
||||
-- @Definitions (to be classified)
|
||||
section
|
||||
|
||||
-- Definition of polynomail of type d
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
|
||||
|
||||
-- Make instance of M_i being an R_0-module
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||
|
||||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||
refine' of_eq_of_gradedMonoid_eq _
|
||||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||
|
||||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||
|
||||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||
|
||||
|
||||
-- Definition of a Hilbert function of a graded module
|
||||
section
|
||||
|
||||
noncomputable def length ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
|
||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Ideal.krullDim (A ⧸ ((⊤ : Submodule A M).annihilator))
|
||||
|
||||
|
||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||
|
||||
|
||||
lemma lengthfield ( k : Type _) [Field k] : length (k) (k) = 1 := by
|
||||
sorry
|
||||
|
||||
|
||||
lemma equaldim ( A : Type _) [CommRing A] (I : Ideal A): dimensionmodule (A) (A ⧸ I) = Ideal.krullDim (A ⧸ I) := by
|
||||
sorry
|
||||
|
||||
lemma dim_iso ( A : Type _) (M : Type _) (N : Type _) [CommRing A] [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (h : Nonempty (M →ₗ[A] N)) : dimensionmodule A M = dimensionmodule A N := by
|
||||
sorry
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
-- Definition of homogeneous ideal
|
||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ )
|
||||
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||
|
||||
-- Definition of homogeneous prime ideal
|
||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
-- Definition of homogeneous maximal ideal
|
||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
||||
|
||||
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||||
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||||
Algebra.ofModule'
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
|
||||
|
||||
|
||||
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||
gen_in_first_piece :
|
||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||
|
||||
|
||||
-- Each component of a graded ring is an additive subgroup
|
||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
||||
sorry
|
||||
|
||||
|
||||
def graded_ring_morphism (𝒜 : ℤ → Type _) (ℬ : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (ℬ i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing ℬ] (f : (⨁ i, 𝒜 i) →+* (⨁ i, ℬ i)) := ∀ i, ∀ (r : 𝒜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
||||
|
||||
structure GradedLinearMap (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] [DirectSum.Gmodule 𝒜 𝓝]
|
||||
extends LinearMap (RingHom.id (⨁ i, 𝒜 i)) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i) where
|
||||
respects_grading (i : ℤ) (r : 𝓜 i) (j : ℤ) : j ≠ i → toFun (DirectSum.of _ i r) j = 0
|
||||
|
||||
/-- `𝓜 →ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear maps from `𝓜` to `𝓝`. -/
|
||||
notation:25 𝓜 " →ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearMap 𝒜 𝓜 𝓝
|
||||
|
||||
structure GradedLinearEquiv (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
extends (⨁ i, 𝓜 i) ≃ (⨁ i, 𝓝 i), 𝓜 →ᵍₗ[𝒜] 𝓝
|
||||
|
||||
/-- `𝓜 ≃ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear isomorphisms from `(⨁ i, 𝓜 i)` to `(⨁ i, 𝓝 i)`. -/
|
||||
notation:25 𝓜 " ≃ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearEquiv 𝒜 𝓜 𝓝
|
||||
|
||||
def graded_ring_isomorphism (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑]
|
||||
(f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i))
|
||||
:= (graded_ring_morphism 𝒜 𝓑 f) ∧ (Function.Bijective f)
|
||||
|
||||
def graded_ring_isomorphic (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑] := ∃ (f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i)), graded_ring_isomorphism 𝒜 𝓑 f
|
||||
|
||||
-- def graded_submodule
|
||||
-- (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
-- [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
-- [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
-- (h (⨁ i, 𝓝 i) : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) :
|
||||
-- Prop :=
|
||||
-- ∃ (piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i
|
||||
|
||||
|
||||
end
|
||||
|
||||
class DirectSum.GalgebrA
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜]
|
||||
extends DirectSum.Gmodule 𝒜 𝓜
|
||||
|
||||
-- def graded_algebra_morphism (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
-- (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜] [DirectSum.GalgebrA 𝒜 𝓜]
|
||||
-- (𝓝 : ℤ → Type _) [∀ i, AddCommGroup (𝓝 i)] [DirectSum.GCommRing 𝓝] [DirectSum.GalgebrA 𝒜 𝓝]
|
||||
-- (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) := (graded_ring_morphism 𝓜 𝓝 f) ∧ (GradedLinearMap 𝒜 𝓜 𝓝 toFun)
|
||||
|
||||
|
||||
|
||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-alg, preserving each component
|
||||
|
||||
instance Quotient_of_graded_gradedring
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
|
||||
DirectSum.GCommRing (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
instance Quotient_of_graded_is_gradedalg
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
|
||||
DirectSum.GalgebrA 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
section
|
||||
variable (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[LocalRing (𝒜 0)] (m : LocalRing.maximalIdeal (𝒜 0))
|
||||
|
||||
-- check if `Pi.Single` or something writes this more elegantly
|
||||
def GradedOneComponent (i : ℤ) : Type _ := ite (i = 0) (𝒜 0 ⧸ LocalRing.maximalIdeal (𝒜 0)) PUnit
|
||||
|
||||
instance (i : ℤ) : AddMonoid (GradedOneComponent 𝒜 i) := by
|
||||
unfold GradedOneComponent
|
||||
sorry -- split into 0 and nonzero cases and then `inferInstance`
|
||||
|
||||
instance : DirectSum.Gmodule 𝒜 (GradedOneComponent 𝒜) := by sorry
|
||||
|
||||
|
||||
|
||||
lemma Graded_local [StandardGraded 𝒜] (I : Ideal (⨁ i, 𝒜 i)) (hp : (HomogeneousMax 𝒜 I)) [∀ i, Module (𝒜 0) ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i))] (art: IsArtinianRing (𝒜 0)) : (∀ (i : ℤ ), (i ≠ 0 → Nonempty (((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i)) →ₗ[𝒜 0] (𝒜 i))) ) := by
|
||||
sorry
|
||||
|
||||
end
|
||||
|
||||
lemma Quotient_of_graded_ringiso (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜](p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
-- (hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: Nonempty (((⨁ i, (𝒜 i))⧸p) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := by
|
||||
sorry
|
||||
|
||||
def Is.Graded_local (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜] := ∃! ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I)
|
||||
|
||||
lemma hilfun_eq (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (iso : GradedLinearEquiv 𝒜 𝓜 𝓝)(hilbm : ℤ → ℤ) (Hhilbm: hilbert_function 𝒜 𝓜 hilbm) (hilbn : ℤ → ℤ) (Hhilbn: hilbert_function 𝒜 𝓝 hilbn) : ∀ (n : ℤ), hilbm n = hilbn n := by
|
||||
sorry
|
||||
|
||||
-- If A_0 is Artinian and local, then A is graded local
|
||||
|
||||
|
||||
|
||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
|
||||
sorry
|
||||
|
||||
|
||||
-- @[BH, 1.5.6 (b)(ii)]
|
||||
-- An associated prime of a graded R-Mod M is graded
|
||||
lemma Associated_prime_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- (reduced version) [BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem Hilbert_polynomial_d_ge_1_reduced
|
||||
(d : ℕ) (d1 : 1 ≤ d)
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d = 0
|
||||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
sorry
|
Loading…
Reference in a new issue