mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-01-13 15:23:47 -06:00
Test
This commit is contained in:
parent
871f38239c
commit
0a8fd3ef7c
2 changed files with 45 additions and 30 deletions
|
@ -1,23 +1,15 @@
|
|||
import Mathlib
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.LinearAlgebra.Finsupp
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||
|
||||
|
||||
|
||||
|
||||
variable {R : Type _} (M A B C : Type _) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup A] [Module R A] [AddCommGroup B] [Module R B] [AddCommGroup C] [Module R C]
|
||||
variable (A' B' C' : ModuleCat R)
|
||||
#check ModuleCat.of R A
|
||||
|
||||
example : Module R A' := inferInstance
|
||||
|
||||
#check ModuleCat.of R B
|
||||
|
||||
example : Module R B' := inferInstance
|
||||
|
||||
#check ModuleCat.of R C
|
||||
|
||||
example : Module R C' := inferInstance
|
||||
|
||||
namespace CategoryTheory
|
||||
|
||||
noncomputable instance abelian : Abelian (ModuleCat.{v} R) := inferInstance
|
||||
noncomputable instance haszero : Limits.HasZeroMorphisms (ModuleCat.{v} R) := inferInstance
|
||||
|
||||
#check (A B : Submodule _ _) → (A ≤ B)
|
||||
|
||||
|
@ -25,17 +17,13 @@ noncomputable instance haszero : Limits.HasZeroMorphisms (ModuleCat.{v} R) := in
|
|||
|
||||
#check krullDim (Submodule _ _)
|
||||
|
||||
noncomputable def length := krullDim (Submodule R M)
|
||||
|
||||
open ZeroObject
|
||||
|
||||
namespace HasZeroMorphisms
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
|
||||
open LinearMap
|
||||
|
||||
#check length M
|
||||
|
||||
#check ModuleCat.of R
|
||||
|
||||
lemma length_additive_shortexact {f : A ⟶ B} {g : B ⟶ C} (h : ShortExact f g) : length B = length A + length C := sorry
|
||||
|
||||
--lemma length_additive_shortexact {f : A ⟶ B} {g : B ⟶ C} (h : ShortExact f g) : length B = length A + length C := sorry
|
||||
|
||||
|
|
|
@ -1,14 +1,41 @@
|
|||
import Mathlib
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.LinearAlgebra.Finsupp
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
|
||||
variable {ι σ R A : Type _}
|
||||
|
||||
--class GradedRing
|
||||
section HomogeneousDef
|
||||
|
||||
variable [GradedRing S]
|
||||
variable [Semiring A]
|
||||
|
||||
namespace DirectSum
|
||||
variable [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ)
|
||||
|
||||
namespace ideal
|
||||
variable [GradedRing 𝒜]
|
||||
|
||||
def S_+ := ⊕ (i ≥ 0) S_i
|
||||
variable (I : HomogeneousIdeal 𝒜)
|
||||
|
||||
lemma A set of homogeneous elements fi∈S+ generates S as an algebra over S0 ↔ they generate S+ as an ideal of S.
|
||||
-- def Ideal.IsHomogeneous : Prop :=
|
||||
-- ∀ (i : ι) ⦃r : A⦄, r ∈ I → (DirectSum.decompose 𝒜 r i : A) ∈ I
|
||||
-- #align ideal.is_homogeneous Ideal.IsHomogeneous
|
||||
|
||||
-- structure HomogeneousIdeal extends Submodule A A where
|
||||
-- is_homogeneous' : Ideal.IsHomogeneous 𝒜 toSubmodule
|
||||
|
||||
--#check Ideal.IsPrime hI
|
||||
|
||||
def HomogeneousPrime (I : Ideal A):= Ideal.IsPrime I
|
||||
|
||||
def HomogeneousMax (I : Ideal A):= Ideal.IsMaximal I
|
||||
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
Loading…
Reference in a new issue