mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #36 from GTBarkley/sayantan
new: Made some progress on the isField.dim_zero lemma
This commit is contained in:
commit
0291df2283
1 changed files with 13 additions and 3 deletions
|
@ -57,9 +57,19 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
|||
simp [height] at h
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h, primeP⟩⟩ := x
|
||||
have PgtBot : P > ⊥ := Ne.bot_lt h
|
||||
sorry
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
have PgtBot : P > ⊥ := Ne.bot_lt h1
|
||||
have pos_height : ↑(Set.chainHeight {J | J < P}) > 0 := by
|
||||
have : ⊥ ∈ {J | J < P} := PgtBot
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
-- have : {J | J < P} ≠ ∅ := Set.Nonempty.ne_empty this
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact Iff.mp ENat.one_le_iff_pos this
|
||||
have zero_height : ↑(Set.chainHeight {J | J < P}) = 0 := by
|
||||
-- Probably need to use Sup_le or something here
|
||||
sorry
|
||||
have : ↑(Set.chainHeight {J | J < P}) ≠ 0 := Iff.mp pos_iff_ne_zero pos_height
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
|
|
Loading…
Reference in a new issue