diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index 9388083..449da0d 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -5,7 +5,7 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic set_option maxHeartbeats 0 macro "ls" : tactic => `(tactic|library_search) --- New tactic "obviously" +-- From Kyle : New tactic "obviously" macro "obviously" : tactic => `(tactic| ( first @@ -41,7 +41,7 @@ example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] rw [F] - simp + simp [simp] -- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ @@ -51,7 +51,9 @@ end section noncomputable section -- Polynomial type of degree d @[simp] -def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly +def PolyType (f : ℤ → ℤ) (d : ℕ) := + ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ + d = Polynomial.degree Poly section example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by @@ -68,43 +70,30 @@ def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) -- (NO need to prove another direction) Constant polynomial function = constant function lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : - (F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by + (F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by constructor - · intro h - rintro r + · intro h r refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] - rw [h] - simp + simp [h] · sorry -- Get the polynomial G (X) = F (X + s) from the polynomial F(X) -lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by +lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), + Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ + (Polynomial.degree G = Polynomial.degree F) := by sorry -- Shifting doesn't change the polynomial type -lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℕ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by - simp only [PolyType] - rcases hf with ⟨F, hh⟩ - rcases hh with ⟨N,s1, s2⟩ - have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by - exact Polynomial_shifting F s - rcases this with ⟨Poly, h1, h2⟩ - use Poly - use N - constructor - · intro n - specialize s1 (n + s) - intro hN +lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℕ) + (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by + rcases hf with ⟨F, ⟨N, s1, s2⟩⟩ + rcases (Polynomial_shifting F s) with ⟨Poly, h1, h2⟩ + use Poly, N; constructor + · intro n hN have this1 : f (n + s) = Polynomial.eval (n + (s : ℚ)) F := by - have this2 : N ≤ n + s := by linarith - have this3 : ↑(f (n + ↑s)) = Polynomial.eval (↑(n + ↑s)) F := by tauto - rw [this3] - norm_cast - specialize hfg n - rw [←hfg, this1] - specialize h1 n - tauto + rw [s1 (n + s) (by linarith)]; norm_cast + rw [←hfg n, this1]; exact (h1 n).symm · rw [h2, s2] -- PolyType 0 = constant function @@ -215,8 +204,6 @@ lemma b_to_a (f : ℤ → ℤ) (d : ℕ) (poly : PolyType f d) : end - - -- @Additive lemma of length for a SES -- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 section