From 88a243d26df0919ac1bd36d1a0810f3007a98a0d Mon Sep 17 00:00:00 2001 From: monula95 dutta Date: Wed, 14 Jun 2023 18:20:41 +0000 Subject: [PATCH] new homogeneous --- CommAlg/monalisa.lean | 87 ++++++++++++++++--------------------------- 1 file changed, 32 insertions(+), 55 deletions(-) diff --git a/CommAlg/monalisa.lean b/CommAlg/monalisa.lean index d3a272e..e815cb2 100644 --- a/CommAlg/monalisa.lean +++ b/CommAlg/monalisa.lean @@ -1,8 +1,5 @@ import Mathlib.Order.KrullDimension -import Mathlib.Order.JordanHolder import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -import Mathlib.Order.Height -import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Operations import Mathlib.LinearAlgebra.Finsupp import Mathlib.RingTheory.GradedAlgebra.Basic @@ -11,11 +8,6 @@ import Mathlib.Algebra.Module.GradedModule import Mathlib.RingTheory.Ideal.AssociatedPrime import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Artinian -import Mathlib.Algebra.Module.GradedModule -import Mathlib.RingTheory.Noetherian -import Mathlib.RingTheory.Finiteness -import Mathlib.RingTheory.Ideal.Operations -import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain @@ -25,27 +17,12 @@ import Mathlib.RingTheory.Localization.AtPrime import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Algebra.DirectSum.Ring import Mathlib.RingTheory.Ideal.LocalRing -import Mathlib +--import Mathlib import Mathlib.Algebra.MonoidAlgebra.Basic import Mathlib.Data.Finset.Sort -import Mathlib.Order.Height -import Mathlib.Order.KrullDimension import Mathlib.Order.JordanHolder -import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -import Mathlib.Order.Height import Mathlib.RingTheory.Ideal.Basic -import Mathlib.RingTheory.Ideal.Operations -import Mathlib.LinearAlgebra.Finsupp -import Mathlib.RingTheory.GradedAlgebra.Basic -import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal -import Mathlib.Algebra.Module.GradedModule -import Mathlib.RingTheory.Ideal.AssociatedPrime -import Mathlib.RingTheory.Noetherian -import Mathlib.RingTheory.Artinian -import Mathlib.Algebra.Module.GradedModule -import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Finiteness -import Mathlib.RingTheory.Ideal.Operations @@ -53,11 +30,14 @@ import Mathlib.RingTheory.Ideal.Operations noncomputable def length ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} - -def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I) + def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] + [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I -def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I) +def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I) + + +def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I) --theorem monotone_stabilizes_iff_noetherian : -- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by @@ -67,6 +47,7 @@ open GradedMonoid.GSmul open DirectSum + instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i) where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) @@ -88,32 +69,10 @@ instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGr letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) - -- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) - -noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] - [DirectSum.GCommRing 𝒜] - [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i)) - - -lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] - [DirectSum.GCommRing 𝒜] - [DirectSum.Gmodule 𝒜 𝓜] - (finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by - intro i - let h := dummyhil_function 𝒜 𝓜 - simp at h - let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne - have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _ - have' := hn i - exact ((n i) : ℤ ) - - noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i))) - - noncomputable def dimensionring { A: Type _} [CommRing A] := krullDim (PrimeSpectrum A) @@ -121,20 +80,38 @@ noncomputable def dimensionring { A: Type _} noncomputable def dimensionmodule ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) ) +-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator ) + -- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] -- [DirectSum.GCommRing 𝒜] -- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry -def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly +def PolyType (f : ℤ → ℤ) (d : ℕ ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly -theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] -[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) -(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ) + (Hhilb: hilbert_function 𝒜 𝓜 hilb) +: PolyType hilb (d - 1) := by + sorry --- Semiring A] --- variable [SetLike σ A] \ No newline at end of file +theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ) +: true := by + sorry + +lemma ass_graded (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] +(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by +sorry +