2023-06-15 20:22:46 -05:00
|
|
|
|
import Mathlib.Order.KrullDimension
|
|
|
|
|
import Mathlib.Order.JordanHolder
|
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
|
|
|
import Mathlib.Order.Height
|
|
|
|
|
import Mathlib.RingTheory.Noetherian
|
|
|
|
|
import CommAlg.krull
|
|
|
|
|
|
|
|
|
|
variable (R : Type _) [CommRing R] [IsNoetherianRing R]
|
|
|
|
|
|
|
|
|
|
lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
|
|
|
|
|
(h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R):
|
|
|
|
|
p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by
|
|
|
|
|
intro h
|
|
|
|
|
apply height_le_of_gt_height_lt _ p
|
|
|
|
|
intro q qlep
|
|
|
|
|
by_contra hcontr
|
|
|
|
|
push_neg at hcontr
|
|
|
|
|
simp only [le_refl, tsub_eq_zero_of_le] at hcontr
|
|
|
|
|
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
#check (_ : Ideal R) ^ (_ : ℕ)
|
|
|
|
|
#synth Pow (Ideal R) (ℕ)
|
|
|
|
|
|
|
|
|
|
def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
|
|
|
|
carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I}
|
|
|
|
|
zero_mem' := by
|
|
|
|
|
simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true]
|
|
|
|
|
use 1
|
|
|
|
|
rw [←Q.ne_top_iff_one]
|
|
|
|
|
exact hin.ne_top
|
|
|
|
|
add_mem' := by
|
|
|
|
|
rintro a b ⟨sa, hsa1, hsa2⟩ ⟨sb, hsb1, hsb2⟩
|
|
|
|
|
use sa * sb
|
|
|
|
|
constructor
|
|
|
|
|
. intro h
|
|
|
|
|
cases hin.mem_or_mem h <;> contradiction
|
|
|
|
|
ring_nf
|
|
|
|
|
apply I.add_mem --<;> simp only [I.mul_mem_left, hsa2, hsb2]
|
|
|
|
|
. rw [mul_comm sa, mul_assoc]
|
|
|
|
|
exact I.mul_mem_left sb hsa2
|
|
|
|
|
. rw [mul_assoc]
|
|
|
|
|
exact I.mul_mem_left sa hsb2
|
|
|
|
|
smul_mem' := by
|
|
|
|
|
intro c x
|
|
|
|
|
dsimp
|
|
|
|
|
rintro ⟨s, hs1, hs2⟩
|
|
|
|
|
use s
|
|
|
|
|
constructor; exact hs1
|
|
|
|
|
rw [←mul_assoc, mul_comm s, mul_assoc]
|
|
|
|
|
exact Ideal.mul_mem_left _ _ hs2
|
|
|
|
|
|
2023-06-15 23:57:28 -05:00
|
|
|
|
|
|
|
|
|
theorem WF_interval_le_prime (I : Ideal R) (P : Ideal R) [P.IsPrime]
|
|
|
|
|
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
|
|
|
|
|
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
|
|
|
|
|
|
2023-06-15 20:22:46 -05:00
|
|
|
|
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
2023-06-15 23:57:28 -05:00
|
|
|
|
[LocalRing R] {x : R}
|
2023-06-15 20:22:46 -05:00
|
|
|
|
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
2023-06-15 23:57:28 -05:00
|
|
|
|
Ideal.height (closedPoint R) ≤ 1 := by
|
|
|
|
|
-- by_contra hcont
|
|
|
|
|
-- push_neg at hcont
|
|
|
|
|
-- rw [Ideal.lt_height_iff'] at hcont
|
|
|
|
|
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩
|
|
|
|
|
apply height_le_of_gt_height_lt
|
|
|
|
|
intro p hp
|
|
|
|
|
|
2023-06-15 20:22:46 -05:00
|
|
|
|
sorry
|