2023-06-14 02:23:01 -05:00
|
|
|
|
import Mathlib.Order.KrullDimension
|
|
|
|
|
import Mathlib.Order.JordanHolder
|
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
|
|
|
import Mathlib.Order.Height
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Basic
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Operations
|
|
|
|
|
import Mathlib.LinearAlgebra.Finsupp
|
|
|
|
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
|
|
|
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
|
|
|
|
import Mathlib.Algebra.Module.GradedModule
|
|
|
|
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
|
|
|
|
import Mathlib.RingTheory.Noetherian
|
|
|
|
|
import Mathlib.RingTheory.Artinian
|
|
|
|
|
import Mathlib.Algebra.Module.GradedModule
|
|
|
|
|
import Mathlib.RingTheory.Noetherian
|
|
|
|
|
import Mathlib.RingTheory.Finiteness
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Operations
|
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
|
|
|
import Mathlib.RingTheory.FiniteType
|
|
|
|
|
import Mathlib.Order.Height
|
|
|
|
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
|
|
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Quotient
|
|
|
|
|
import Mathlib.RingTheory.Localization.AtPrime
|
|
|
|
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
|
|
|
import Mathlib.Algebra.DirectSum.Ring
|
|
|
|
|
import Mathlib.RingTheory.Ideal.LocalRing
|
|
|
|
|
|
|
|
|
|
-- Setting for "library_search"
|
|
|
|
|
set_option maxHeartbeats 0
|
|
|
|
|
macro "ls" : tactic => `(tactic|library_search)
|
|
|
|
|
|
|
|
|
|
-- New tactic "obviously"
|
|
|
|
|
macro "obviously" : tactic =>
|
|
|
|
|
`(tactic| (
|
|
|
|
|
first
|
|
|
|
|
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
|
|
|
|
| simp; done; dbg_trace "it was simp"
|
|
|
|
|
| tauto; done; dbg_trace "it was tauto"
|
|
|
|
|
| simp; tauto; done; dbg_trace "it was simp tauto"
|
|
|
|
|
| rfl; done; dbg_trace "it was rfl"
|
|
|
|
|
| norm_num; done; dbg_trace "it was norm_num"
|
|
|
|
|
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
|
|
|
|
-- | gcongr; done
|
|
|
|
|
| ring; done; dbg_trace "it was ring"
|
|
|
|
|
| trivial; done; dbg_trace "it was trivial"
|
|
|
|
|
-- | nlinarith; done
|
|
|
|
|
| fail "No, this is not obvious."))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- @Definitions (to be classified)
|
|
|
|
|
section
|
|
|
|
|
|
|
|
|
|
noncomputable def length ( A : Type _) (M : Type _)
|
|
|
|
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
|
|
|
|
|
|
|
|
|
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
|
|
|
|
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
|
|
|
|
|
|
|
|
|
--theorem monotone_stabilizes_iff_noetherian :
|
|
|
|
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
|
|
|
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
|
|
|
|
|
|
|
|
|
open GradedMonoid.GSmul
|
|
|
|
|
open DirectSum
|
|
|
|
|
|
|
|
|
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
|
|
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
|
|
|
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
|
|
|
|
|
|
|
|
|
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
|
|
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
|
|
|
|
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
|
|
|
|
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
|
|
|
|
refine' of_eq_of_gradedMonoid_eq _
|
|
|
|
|
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
|
|
|
|
|
|
|
|
|
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
|
|
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
|
|
|
|
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
|
|
|
|
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
|
|
|
|
|
|
|
|
|
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
|
|
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
|
|
|
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
|
|
|
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
|
|
|
|
|
|
|
|
|
-- Definition of a Hilbert function of a graded module
|
|
|
|
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
|
|
|
[DirectSum.GCommRing 𝒜]
|
|
|
|
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
|
|
|
|
|
|
|
|
|
noncomputable def dimensionring { A: Type _}
|
|
|
|
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
|
|
|
|
|
|
|
|
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
|
|
|
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
|
|
|
|
|
|
|
|
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
|
|
|
-- [DirectSum.GCommRing 𝒜]
|
|
|
|
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
|
|
|
|
|
|
|
|
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- @[BH, 4.1.3] when d ≥ 1
|
2023-06-14 12:41:50 -05:00
|
|
|
|
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
2023-06-14 11:14:47 -05:00
|
|
|
|
theorem hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
2023-06-14 02:23:01 -05:00
|
|
|
|
[DirectSum.GCommRing 𝒜]
|
|
|
|
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
|
|
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
2023-06-14 12:41:50 -05:00
|
|
|
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
|
|
|
|
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
2023-06-14 02:23:01 -05:00
|
|
|
|
: PolyType hilb (d - 1) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- @[BH, 4.1.3] when d = 0
|
2023-06-14 12:41:50 -05:00
|
|
|
|
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
2023-06-14 11:14:47 -05:00
|
|
|
|
theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
2023-06-14 02:23:01 -05:00
|
|
|
|
[DirectSum.GCommRing 𝒜]
|
|
|
|
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
|
|
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
2023-06-14 12:41:50 -05:00
|
|
|
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
|
|
|
|
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
|
|
|
|
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
2023-06-14 11:14:47 -05:00
|
|
|
|
sorry
|
2023-06-14 02:23:01 -05:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- @[BH, 1.5.6 (b)(ii)]
|
|
|
|
|
-- An associated prime of a graded R-Mod M is graded
|
2023-06-14 11:14:47 -05:00
|
|
|
|
lemma Associated_prime_of_graded_is_graded
|
|
|
|
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
|
|
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
|
|
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
|
|
|
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
2023-06-14 02:23:01 -05:00
|
|
|
|
: true := by
|
|
|
|
|
sorry
|
2023-06-14 11:14:47 -05:00
|
|
|
|
-- Ideal.IsHomogeneous 𝒜 p
|
2023-06-14 02:23:01 -05:00
|
|
|
|
|
|
|
|
|
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
2023-06-14 11:14:47 -05:00
|
|
|
|
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
|
|
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
|
|
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
|
|
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
2023-06-14 02:23:01 -05:00
|
|
|
|
: true := by
|
|
|
|
|
sorry
|
|
|
|
|
|