comm_alg/CommAlg/grant.lean

110 lines
3.4 KiB
Text
Raw Normal View History

import Mathlib.Order.KrullDimension
2023-06-11 01:00:13 -05:00
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
2023-06-11 01:00:13 -05:00
import Mathlib.Order.Height
import CommAlg.krull
2023-06-09 22:13:59 -05:00
#check (p q : PrimeSpectrum _) → (p ≤ q)
#check Preorder (PrimeSpectrum _)
2023-06-11 01:00:13 -05:00
-- Dimension of a ring
#check krullDim (PrimeSpectrum _)
-- Length of a module
#check krullDim (Submodule _ _)
#check JordanHolderLattice
2023-06-12 23:23:17 -05:00
section Chains
2023-06-11 01:00:13 -05:00
variable {α : Type _} [Preorder α] (s : Set α)
def finFun_to_list {n : } : (Fin n → α) → List α := by sorry
def series_to_chain : StrictSeries s → s.subchain
| ⟨length, toFun, strictMono⟩ =>
⟨ finFun_to_list (fun x => toFun x),
sorry⟩
2023-06-11 01:00:13 -05:00
-- there should be a coercion from WithTop to WithBot (WithTop ) but it doesn't seem to work
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
2023-06-11 01:00:13 -05:00
lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop )) = krullDim s := by
intro hs
unfold Set.chainHeight
unfold krullDim
have hKrullSome : ∃n, krullDim s = some n := by
sorry
-- norm_cast
2023-06-11 07:33:18 -05:00
sorry
2023-06-12 23:23:17 -05:00
end Chains
section Krull
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
open Ideal
2023-06-12 23:23:17 -05:00
-- chain of primes
#check height
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
-- height 𝔭 ≥ n ↔ := sorry
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n
. constructor <;> intro h <;> exfalso
. exact (not_le.mpr h) le_top
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = + 1) at h
-- rw [WithTop.top_add] at h
tauto
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
symm
show (n + 1 ≤ m ↔ _ )
apply ENat.add_one_le_iff
exact ENat.coe_ne_top _
rw [this]
unfold Ideal.height
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ) = (_:ℕ∞))
rw [{J | J < 𝔭}.le_chainHeight_iff]
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
2023-06-13 00:01:18 -05:00
-- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
2023-06-12 23:23:17 -05:00
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
. --rw [and_assoc]
-- show _ ∧ _ ∧ _
--exact ⟨hc.1, _⟩
tauto
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
norm_cast at hc
tauto
2023-06-13 00:01:18 -05:00
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
lift (Ideal.krullDim R) to ℕ∞ using h with k
use k
2023-06-12 23:23:17 -05:00
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
sorry
2023-06-12 23:23:17 -05:00
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
2023-06-13 00:01:18 -05:00
2023-06-12 23:23:17 -05:00
#check (sorry : False)
#check (sorryAx)
#check (4 : WithBot ℕ∞)
#check List.sum
-- #check ((4 : ℕ∞) : WithBot (WithTop ))
2023-06-12 23:23:17 -05:00
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
variable (P : PrimeSpectrum R)
#check {J | J < P}.le_chainHeight_iff (n := 4)