comm_alg/CommAlg/polynomial.lean

156 lines
5.3 KiB
Text
Raw Permalink Normal View History

import CommAlg.krull
section ChainLemma
variable {α β : Type _}
variable [LT α] [LT β] (s t : Set α)
namespace Set
open List
/-
Sorry for using aesop, but it doesn't take that long
-/
theorem append_mem_subchain_iff :
l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by
simp [subchain, chain'_append]
aesop
end Set
end ChainLemma
variable {R : Type _} [CommRing R]
open Ideal Polynomial
namespace Polynomial
/-
The composition R → R[X] → R is the identity
-/
theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp
end Polynomial
/-
Given an ideal I in R, we define the ideal adjoin_x' I to be the kernel
of R[X] → R → R/I
-/
def adj_x_map (I : Ideal R) : R[X] →+* R I := (Ideal.Quotient.mk I).comp constantCoeff
def adjoin_x' (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I)
def adjoin_x (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where
asIdeal := adjoin_x' I.asIdeal
IsPrime := RingHom.ker_isPrime _
@[simp]
lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by
ext x; simp [adj_x_map]
lemma adjoin_x_eq (I : Ideal R) : adjoin_x' I = I.map C ⊔ Ideal.span {X} := by
apply le_antisymm
. rintro p hp
have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩
obtain ⟨q, r, rfl⟩ := h
suffices : r ∈ I
. simp only [Submodule.mem_sup, Ideal.mem_span_singleton]
refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩
rw [adjoin_x', adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp
rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp
rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp
. rw [sup_le_iff]
constructor
. simp [adjoin_x', RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map]
. simp [span_le, adjoin_x', RingHom.mem_ker, adj_x_map]
/-
If I is prime in R, the pushforward I*R[X] is prime in R[X]
-/
def map_prime (I : PrimeSpectrum R) : PrimeSpectrum R[X] :=
⟨I.asIdeal.map C, isPrime_map_C_of_isPrime I.IsPrime⟩
/-
The pushforward map (Ideal R) → (Ideal R[X]) is injective
-/
lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by
have H : map constantCoeff (I.map C) = map constantCoeff (J.map C) := by rw [h]
simp [Ideal.map_map, coeff_C_eq] at H
exact H
/-
The pushforward map (Ideal R) → (Ideal R[X]) is strictly monotone
-/
lemma map_strictmono {I J : Ideal R} (h : I < J) : I.map C < J.map C := by
rw [lt_iff_le_and_ne] at h ⊢
exact ⟨map_mono h.1, fun H => h.2 (map_inj H)⟩
lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime I < adjoin_x I := by
simp [adjoin_x, adjoin_x_eq]
show I.asIdeal.map C < I.asIdeal.map C ⊔ span {X}
simp [Ideal.span_le, mem_map_C_iff]
use 1
simp
rw [←Ideal.eq_top_iff_one]
exact I.IsPrime.ne_top'
2023-06-16 00:13:11 -05:00
lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x I) := by
suffices H : height I + (1 : ) ≤ height (adjoin_x I) + (0 : )
. norm_cast at H; rw [add_zero] at H; exact H
rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0]
intro l hl
use ((l.map map_prime) ++ [map_prime I])
2023-06-16 00:13:11 -05:00
refine' ⟨_, by simp⟩
. simp [Set.append_mem_subchain_iff]
2023-06-16 00:13:11 -05:00
refine' ⟨_, map_lt_adjoin_x I, fun a ha => _⟩
. refine' ⟨_, fun i hi => _⟩
. apply List.chain'_map_of_chain' map_prime (fun a b hab => map_strictmono hab) hl.1
. rw [List.mem_map] at hi
obtain ⟨a, ha, rfl⟩ := hi
calc map_prime a < map_prime I := by apply map_strictmono; apply hl.2; apply ha
_ < adjoin_x I := by apply map_lt_adjoin_x
2023-06-16 00:13:11 -05:00
. have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime b = a
. have H2 : l ≠ []
. intro h
rw [h] at ha
tauto
use l.getLast H2
refine' ⟨List.getLast_mem H2, _⟩
have H3 : l.map map_prime ≠ []
. intro hl
apply H2
apply List.eq_nil_of_map_eq_nil hl
rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha
simp [←ha, List.getLast_map _ H2]
obtain ⟨b, hb, rfl⟩ := H
apply map_strictmono
apply hl.2
exact hb
2023-06-16 00:13:11 -05:00
/-
dim R + 1 ≤ dim R[X]
-/
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + (1 : ℕ∞) ≤ krullDim R[X] := by
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
rw [hn]
change ↑(n + 1) ≤ krullDim R[X]
have := le_of_eq hn.symm
induction' n using ENat.recTopCoe with n
. change krullDim R = at hn
change ≤ krullDim R[X]
rw [krullDim_eq_top_iff] at hn
rw [top_le_iff, krullDim_eq_top_iff]
intro n
obtain ⟨I, hI⟩ := hn n
use adjoin_x I
calc n ≤ height I := hI
_ ≤ height I + 1 := le_self_add
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
change n ≤ krullDim R at this
change (n + 1 : ) ≤ krullDim R[X]
rw [le_krullDim_iff] at this ⊢
obtain ⟨I, hI⟩ := this
use adjoin_x I
apply WithBot.coe_mono
calc n + 1 ≤ height I + 1 := by
apply add_le_add_right
change ((n : ℕ∞) : WithBot ℕ∞) ≤ (height I) at hI
rw [WithBot.coe_le_coe] at hI
exact hI
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I