comm_alg/CommAlg/grant.lean

228 lines
7.6 KiB
Text
Raw Permalink Normal View History

import Mathlib.Order.KrullDimension
2023-06-11 01:00:13 -05:00
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
2023-06-11 01:00:13 -05:00
import Mathlib.Order.Height
import CommAlg.krull
2023-06-09 22:13:59 -05:00
#check (p q : PrimeSpectrum _) → (p ≤ q)
#check Preorder (PrimeSpectrum _)
2023-06-11 01:00:13 -05:00
-- Dimension of a ring
#check krullDim (PrimeSpectrum _)
-- Length of a module
#check krullDim (Submodule _ _)
#check JordanHolderLattice
2023-06-12 23:23:17 -05:00
section Chains
2023-06-11 01:00:13 -05:00
variable {α : Type _} [Preorder α] (s : Set α)
def finFun_to_list {n : } : (Fin n → α) → List α := by sorry
def series_to_chain : StrictSeries s → s.subchain
| ⟨length, toFun, strictMono⟩ =>
⟨ finFun_to_list (fun x => toFun x),
sorry⟩
2023-06-11 01:00:13 -05:00
-- there should be a coercion from WithTop to WithBot (WithTop ) but it doesn't seem to work
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
2023-06-11 01:00:13 -05:00
lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop )) = krullDim s := by
intro hs
unfold Set.chainHeight
unfold krullDim
have hKrullSome : ∃n, krullDim s = some n := by
sorry
-- norm_cast
2023-06-11 07:33:18 -05:00
sorry
2023-06-12 23:23:17 -05:00
end Chains
section Krull
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
open Ideal
2023-06-12 23:23:17 -05:00
-- chain of primes
#check height
2023-06-13 14:11:44 -05:00
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
2023-06-12 23:23:17 -05:00
2023-06-13 14:11:44 -05:00
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
2023-06-12 23:23:17 -05:00
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n
. constructor <;> intro h <;> exfalso
. exact (not_le.mpr h) le_top
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = + 1) at h
-- rw [WithTop.top_add] at h
tauto
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
symm
show (n + 1 ≤ m ↔ _ )
apply ENat.add_one_le_iff
exact ENat.coe_ne_top _
rw [this]
unfold Ideal.height
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ) = (_:ℕ∞))
rw [{J | J < 𝔭}.le_chainHeight_iff]
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
2023-06-13 00:01:18 -05:00
-- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
2023-06-12 23:23:17 -05:00
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
. --rw [and_assoc]
-- show _ ∧ _ ∧ _
--exact ⟨hc.1, _⟩
tauto
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
norm_cast at hc
tauto
2023-06-13 23:51:49 -05:00
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
show (_ < _) ↔ _
rw [WithBot.coe_lt_coe]
exact lt_height_iff' _
lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by
sorry
2023-06-13 00:01:18 -05:00
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
lift (Ideal.krullDim R) to ℕ∞ using h with k
use k
2023-06-13 14:11:44 -05:00
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
-- sorry
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
2023-06-13 15:34:02 -05:00
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
2023-06-13 14:11:44 -05:00
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
2023-06-13 15:34:02 -05:00
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
2023-06-13 14:11:44 -05:00
2023-06-13 15:34:02 -05:00
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
2023-06-13 14:11:44 -05:00
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
2023-06-13 23:51:49 -05:00
specialize h ⟨a, ha⟩
2023-06-13 14:11:44 -05:00
tauto
. rw [h.forall_iff]
trivial
2023-06-13 00:01:18 -05:00
2023-06-12 23:23:17 -05:00
#check (sorry : False)
#check (sorryAx)
#check (4 : WithBot ℕ∞)
#check List.sum
2023-06-13 23:51:49 -05:00
#check (_ ∈ (_ : List _))
variable (α : Type )
#synth Membership α (List α)
#check bot_lt_iff_ne_bot
-- #check ((4 : ℕ∞) : WithBot (WithTop ))
2023-06-12 23:23:17 -05:00
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
2023-06-13 23:51:49 -05:00
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
applies only to dimension zero rings and domains of dimension 1. -/
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ) := by
rw [krullDim_le_iff R 1]
-- unfold Ring.DimensionLEOne
intro H p
-- have Hp := H p.asIdeal
-- have Hp := fun h => (Hp h) p.IsPrime
apply le_of_not_gt
intro h
rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
norm_cast at hc3
rw [List.chain'_iff_get] at hc1
specialize hc1 0 (by rw [hc3]; simp)
-- generalize hq0 : List.get _ _ = q0 at hc1
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
-- have hq0 : q0 ∈ c := List.get_mem _ _ _
-- have hq1 : q1 ∈ c := List.get_mem _ _ _
specialize hc2 q1 (List.get_mem _ _ _)
-- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal)
change q0.asIdeal < q1.asIdeal at hc1
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
-- change q1.asIdeal < p.asIdeal at hc2
apply IsPrime.ne_top p.IsPrime
apply (IsCoatom.lt_iff H.out).mp
exact hc2
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
end Krull
section iSupWithBot
variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α)
#synth SupSet (WithBot ℕ∞)
protected lemma WithBot.iSup_ge_coe_iff {a : α} :
(a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by
rw [WithBot.coe_le_iff]
sorry
2023-06-12 23:23:17 -05:00
2023-06-13 23:51:49 -05:00
end iSupWithBot
section myGreatElab
open Lean Meta Elab
syntax (name := lhsStx) "lhs% " term:max : term
syntax (name := rhsStx) "rhs% " term:max : term
@[term_elab lhsStx, term_elab rhsStx]
def elabLhsStx : Term.TermElab := fun stx expectedType? =>
match stx with
| `(lhs% $t) => do
let (lhs, _, eq) ← mkExpected expectedType?
discard <| Term.elabTermEnsuringType t eq
return lhs
| `(rhs% $t) => do
let (_, rhs, eq) ← mkExpected expectedType?
discard <| Term.elabTermEnsuringType t eq
return rhs
| _ => throwUnsupportedSyntax
where
mkExpected expectedType? := do
let α
if let some expectedType := expectedType? then
pure expectedType
else
mkFreshTypeMVar
let lhs ← mkFreshExprMVar α
let rhs ← mkFreshExprMVar α
let u ← getLevel α
let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs]
return (lhs, rhs, eq)
#check lhs% (add_comm 1 2)
#check rhs% (add_comm 1 2)
#check lhs% (add_comm _ _ : _ = 1 + 2)
example (x y : α) (h : x = y) : lhs% h = rhs% h := h
def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x
#check lhsOf (add_comm 1 2)